Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Study of corn kernel breakage susceptibility as a function of its moisture content by using a laboratory grinding method 
GUO Ya-nan, HOU Liang-yu, LI Lu-lu, GAO Shang, HOU Jun-feng, MING Bo, XIE Rui-zhi, XUE Jun, HOU Peng, WANG Ke-ru, LI Shao-kun
2022, 21 (1): 70-77.   DOI: 10.1016/S2095-3119(20)63250-6
Abstract136)      PDF in ScienceDirect      
The rate of corn kernel breakage in the grain combine harvesters is a crucial factor affecting the quality of the grain shelled in the field.  The objective of the present study was to determine the susceptibility of corn kernels to breakage based on the kernel moisture content in order to determine the moisture content that corresponds to the lowest rate of breakage.  In addition, we evaluated the resistance to breakage of various corn cultivars.  A total of 17 different corn cultivars were planted at two different sowing dates at the Beibuchang Experiment Station, Beijing and the Xinxiang Experiment Station (Henan Province) of the Chinese Academy of Agricultural Sciences.  The corn kernel moisture content was systematically monitored and recorded over time, and the breakage rate was measured by using the grinding method.  The results for all grain samples from the two experimental stations revealed that the breakage rate y is quadratic in moisture content x, y=0.0796x2−3.3929x+78.779; R2=0.2646, n=512.  By fitting to the regression equation, a minimum corn kernel breakage rate of 42.62% was obtained, corresponding to a corn kernel moisture content of 21.31%.  Furthermore, in the 90% confidence interval, the corn kernel moisture ranging from 19.7 to 22.3% led to the lowest kernel breakage rate, which was consistent with the corn kernel moisture content allowing the lowest breakage rate of corn kernels shelled in the field with combine grain harvesters.  Using the lowest breakage rate as the critical point, the correlation between breakage rate and moisture content was significantly negative for low moisture content but positive for high moisture content.  The slope and correlation coefficient of the linear regression equation indicated that high moisture content led to greater sensitivity and correlation between grain breakage and moisture content.  At the Beibuchang Experiment Station, the corn cultivars resistant to breakage were Zhengdan 958 (ZD958) and Fengken 139 (FK139), and the corn cultivars non-resistant to breakage were Lianchuang 825 (LC825), Jidan 66 (JD66), Lidan 295 (LD295), and Jingnongke 728 (JNK728).  At the Xinxiang Experiment Station, the corn cultivars resistant to breakage were HT1, ZD958 and FK139, and the corn cultivars non-resistant to breakage were ZY8911, DK653 and JNK728.  Thus, the breakage classifications of the six corn cultivars were consistent between the two experimental stations.  In conclusion, the results suggested that the high stability of the grinding method allowed it to be used to determine the corn kernel breakage rates of different corn cultivars as a function of moisture content, thus facilitating the breeding and screening of breakage-resistant corn.

Reference | Related Articles | Metrics
Difference in corn kernel moisture content between pre- and post-harvest
LI Lu-lu, MING Bo, XUE Jun, GAO Shang, WANG Ke-ru, XIE Rui-zhi, HOU Peng, LI Shao-kun
2021, 20 (7): 1775-1782.   DOI: 10.1016/S2095-3119(20)63245-2
Abstract109)      PDF in ScienceDirect      
The harvest method of shelling corn (Zea mays L.) kernels in the field decreases labor costs associated with transporting, drying and threshing the crop.  However,  it was previously found that the kernel moisture content increased after field harvest, which decreased the value of corn kernels.  To identify the reasons underlying the increase, we conducted a multi-year and -area trial in the Huang-Huai-Hai Plain, China and performed a staged-harvest test at several phases of kernel dry-down.  The test investigated a range of parameters such as the kernel moisture content pre- and post-harvest, the kernel breakage rate, the amount of impurities, and the moisture content of various other plant tissues.  An analysis of 411 pairs of pre- and post-harvest samples found that kernel moisture content after harvest was 2.2% higher than that before harvest.  In the staged-harvest test, however, a significant increase was only observed when the kernel moisture content before harvest was higher than 23.9%.  The increase in post-harvest kernel moisture content was positively associated with the pre-harvest kernel moisture content, breakage rate and impurity rate.  Typically, at harvest time in this region, there is a significant fraction of immature crops with a high moisture content, resulting in kernels that are prone to breakage or impurities that ultimately lead to increases in water content after harvest.  Therefore, we suggest using hybrids that quickly wither late in the growing stage.  Additionally, farmers should delay harvest in order to minimize the pre-harvest kernel moisture content and thus reduce breakages and impurities, thereby improving the quality of kernels after harvest and the efficiency of corn kernel farming in China.
Reference | Related Articles | Metrics
A major quantitative trait locus controlling phosphorus utilization efficiency under different phytate-P conditions at vegetative stage in barley
GAO Shang-qing, CHEN Guang-deng, HU De-yi, ZHANG Xi-zhou, LI Ting-xuan, LIU Shi-hang, LIU Chun-ji
2018, 17 (2): 285-295.   DOI: 10.1016/S2095-3119(17)61713-1
Abstract771)      PDF in ScienceDirect      
Organic phosphorus (P) is an important component of the soil P pool, and it has been proven to be a potential source of P for plants.  The phosphorus utilization efficiency (PUE) and PUE related traits (tiller number (TN), shoot dry weight (DW), and root dry weight) under different phytate-P conditions (low phytate-P, 0.05 mmol L–1 and normal phytate-P, 0.5 mmol L–1) were investigated using a population consisting of 128 recombinant inbred lines (RILs) at the vegetative stage in barley.  The population was derived from a cross between a P-inefficient genotype (Baudin) and a P-efficient genotype (CN4027, a Hordeum spontaneum accession).  A major locus (designated Qpue.sau-3H) conferring PUE was detected in shoots and roots from the RIL population.  The quantitative trait locus (QTL) was mapped on chromosome 3H and the allele from CN4027 confers high PUE.  This locus explained up to 30.3 and 28.4% of the phenotypic variance in shoots under low and normal phytate-P conditions, respectively.  It also explains 28.3 and 30.7% of the phenotypic variation in root under the low and normal phytate-P conditions, respectively.  Results from this study also showed that TN was not correlated with PUE, and a QTL controlling TN was detected on chromosome 5H.  However, dry weight (DW) was significantly and positively correlated with PUE, and a QTL controlling DW was detected near the Qpue.sau-3H locus.  Based on a covariance analysis, existing data indicated that, although DW may affect PUE, different genes at this locus are likely involved in controlling these two traits.
Reference | Related Articles | Metrics
Overexpression of SOS Genes Enhanced Salt Tolerance in Sweetpotato
GAO Shang, ZHAI Hong, HE Shao-zhen, LIU Qing-chang
2012, 12 (3): 378-386.   DOI: 10.1016/S1671-2927(00)8555
Abstract1834)      PDF in ScienceDirect      
The production of transgenic sweetpotato (cv. Xushu 18) plants exhibiting enhanced salt tolerance using salt overlysensitive (SOS) genes was achieved through Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strainEHA105 harbors a binary vector pCAMBIA3301 with SOS genes (SOS1, SOS2 and SOS3) and bar gene. Selection culturewas conducted using 0.3 mg L-1 phosphinothricin (PPT). A total of 40 plants were produced from the inoculated 170 cellaggregates via somatic embryogenesis. PCR analysis showed that 37 of the 40 regenerated plants were transgenic plants.The in vitro assay demonstrated that superoxide dismutase (SOD) and proline were significantly more accumulated andmalonaldehyde (MDA) was significantly less accumulated in 21 transgenic plants than in control plants when they wereexposed to 86 mmol L-1 NaCl. Salt tolerance of these 21 plants was further evaluated with Hoagland solution containing 0,51, 86, and 120 mmol L-1 NaCl in the greenhouse. The results indicated that 6 of them had significantly better growth androoting ability than the remaining 15 transgenic plants and control plants. Expression of SOS genes in the 6 salt-toleranttransgenic plants was demonstrated by RT-PCR analysis. This study provides an alternative approach for improving salttolerance of sweetpotato.
Reference | Related Articles | Metrics