Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density
LI Bin, GAO Fei, REN Bai-zhao, DONG Shu-ting, LIU Peng, ZHAO Bin, ZHANG Ji-wang
2021, 20 (8): 2077-2089.   DOI: 10.1016/S2095-3119(20)63346-9
Abstract220)      PDF in ScienceDirect      
Hybrids and planting density are the main factors affecting maize lodging resistance.  Here, we aimed to elucidate the mechanism of the regulation of maize lodging resistance by comparing two hybrids at various planting densities from the perspective of lignin metabolism.  Our results showed that compared to lodging-susceptible hybrid Xundan 20 (XD20), lodging-resistant hybrid Denghai 605 (DH605) showed a lower center of gravity and culm morphological characteristics that contributed to the higher lodging resistance of this hybrid.  Lignin content, activities of key lignin synthesis-related enzymes and G-, S- and H-type monomer contents were significantly higher in hybrid DH605 than in hybrid XD20.  Stalk mechanical strength, lignin accumulation and enzyme activity decreased significantly with increasing planting density in the two hybrids.  While G-type monomers first decreased with increasing planting density but then remained stable, S-type monomers showed a decreasing trend, and H-type monomers showed an increasing trend.  Correlation analysis showed that lodging rate was significantly correlated with plant traits and lignin metabolism.  Therefore, maize hybrids characterized by high lignin accumulation, high lignin synthesis-related activities, high S-type monomer content, low center of gravity, high stem puncture strength, high cortical thickness, and small vascular bundle area are more resistant to lodging.  High planting densities reduce stalk lignin accumulation, relevant enzyme activities and mechanical strength, thereby, ultimately increasing the lodging rate significantly.
Reference | Related Articles | Metrics
Essential Oil from Inula britannica Extraction with SF-CO2 and Its Antifungal Activity
ZHAO Te, GAO Fei, ZHOU Lin, SONG Tian-you
2013, 12 (10): 1791-1798.   DOI: 10.1016/S2095-3119(13)60382-2
Abstract1449)      PDF in ScienceDirect      
The aim of this study was to determine the extraction technique of supercritical fluid carbon dioxide (SF-CO2) for the essential oil from Inula britannica flowers and its antifungal activities against plant pathogenic fungi for its potential application as botanical fungicide. The effects of factors, including extraction temperature, extraction pressure, SF-CO2 flow rate, flower powder size, and time on the essential oil yield were studied using the single factor experiment. An orthogonal experiment was conducted to determine the best operating conditions for the maximum extraction oil yield. Adopting the optimum conditions, the maximum yield reached 10.01% at 40°C temperature, 30 MPa pressure, 60 mesh flower powder size, 20 L h-1 SF-CO2 flow rate, and 90 min extraction time. The antifungal activities of I. britannica essential oil using the SF-CO2 against the most important plant pathogenic fungi were also examined through in vitro and in vivo tests. Sixteen plant pathogenic fungi were inhibited to varying degrees at 1 mg mL-1 concentration of the essential oil. The mycelial growth of Gaeumannomyces graminis var. tritici was completely inhibited. The radial growths of Phytophthora capsici and Fusarium monilifome were also inhibited by 83.76 and 64.69%, respectively. In addition, the essential oil can inhibit the spore germination of Fusarium oxysporum f. sp. vasinfectum, Phytophthora capsici, Colletotrichum orbiculare, and Pyricularia grisea, and the corresponding inhibition rates were 98.26, 96.54, 87.89, and 87.35% respectively. The present study has demonstrated that the essential oil of I. britannica flowers extracted through the SF-CO2 technique is one potential and promising antifungal agent that can be used as botanical fungicide to protect crops.
Reference | Related Articles | Metrics