Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15
HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin
2023, 22 (2): 360-370.   DOI: 10.1016/j.jia.2022.08.057
Abstract379)      PDF in ScienceDirect      

Fusarium head blight (FHB) is one of the most detrimental wheat diseases which greatly decreases the yield and grain quality, especially in the middle and lower reaches of the Yangtze River of China.  Fhb1 and Fhb2 are two major resistance loci against Fusarium graminearum.  Yangmai 15 (YM15) is one of the most popular varieties in the middle and lower reaches of the Yangtze River, and it has good weak gluten characters but poor resistance to FHB.  Here we used Fhb1 and Fhb2 to improve the FHB resistance of YM15 by a molecular marker-assisted selection (MAS) backcrossing strategy.  The selection of agronomic traits was performed for each generation.  We successfully selected seven introgressed lines which carry homozygous Fhb1 and Fhb2 with significantly higher FHB resistance than the recurrent parent YM15.  Three of the introgressed lines had agronomic and quality characters that were similar to YM15.  This study demonstrates that the pyramiding of Fhb1 and Fhb2 could significantly improve the FHB resistance in wheat using the MAS approach

Reference | Related Articles | Metrics
Influence of high-molecular-weight glutenin subunit deletions at the Glu-A1 and Glu-D1 loci on protein body development, protein components and dough properties of wheat (Triticum aestivum L.)
LIU Da-tong, ZHANG Xiao, JIANG Wei, LI Man, WU Xu-jiang, GAO De-rong, BIE Tong-de, LU Cheng-bin
2022, 21 (7): 1867-1876.   DOI: 10.1016/S2095-3119(21)63605-5
Abstract264)      PDF in ScienceDirect      
High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat.  As the organelle where proteins are stored, the development of protein bodies (PBs) reflects the status of protein synthesis and also affects grain quality to a great extent.  In this study, with special materials of four near-isogenic lines in a Yangmai 18 background we created, the effects of Glu-A1 and Glu-D1 loci deletions on the development and morphological properties of the protein body, protein components and dough properties were investigated.  The results showed that the deletion of the HMW-GS subunit delayed the development process of the PBs, and slowed the increases of volume and area of PBs from 10 days after anthesis (DAA) onwards.  In contrast, the areas of PBs at 25 DAA, the middle or late stage of endosperm development, showed no distinguishable differences among the four lines.  Compared to the wild type and single null type in Glu-A1, the ratios of HMW-GSs to low-molecular-weight glutenin subunits (LMW-GSs), glutenin macropolymer (GMP) content, mixograph parameters as well as extension parameters decreased in the single null type in Glu-D1 and double null type in Glu-A1 and Glu-D1, while the ratios of gliadins (Gli)/glutenins (Glu) in those types increased.  The absence of Glu-D1 subunits decreased both dough strength and extensibility significantly compared to the Glu-A1 deletion type.  These results provide a detailed description of the effect of HMW-GS deletion on PBs, protein traits and dough properties, and contribute to the utilization of Glu-D1 deletion germplasm in weak gluten wheat improvement for use in cookies, cakes and southern steamed bread in China and liquor processing. 
Reference | Related Articles | Metrics