Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection
LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng
2023, 22 (6): 1750-1762.   DOI: 10.1016/j.jia.2022.10.010
Abstract266)      PDF in ScienceDirect      

Rice stripe disease, caused by rice stripe virus (RSV) which is transmitted by small brown planthopper (SBPH, Laodelphax striatellus Fallen), resulted in serious losses to rice production during the last 2 decades.  Research on the molecular differences between resistant and susceptible rice varieties and the interaction between rice and RSV remains inadequate.  In this study, RNA-Seq was used to analyze the transcriptomic differences between the resistant and susceptible rice varieties at different times post RSV infection.  Through Gene Ontology (GO) annotation, the differentially expressed genes (DEGs) related to transcription factors, peroxidases, and kinases of 2 varieties at 3 time points were identified.  Comparing these 2 varieties, the DEGs associated with these 3 GOs were numerically less in the resistant variety than in the susceptible variety, but the expression showed a significant up- or down-regulation trend under the conditions of |log2(Fold change)|>0 & Padj<0.05 by significance analysis.  Then through Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs involved in some pathways that have a contribution to disease resistance including plant hormone signal transduction and plant–pathogen interaction were found.  The results showed that resistance responses regulated by abscisic acid (ABA) and brassinosteroids (BR) were the same for 2 varieties, but that mediated by salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) were different.  The DEGs in resistant and susceptible varieties at the 3 time points were identified in both PAMP-triggered immunity (PTI) and Effector protein-triggered immunity (ETI), with that most of the unigenes of the susceptible variety were involved in PTI, whereas most of the unigenes of the resistant variety were involved in ETI.  These results revealed the different responses of resistant and susceptible varieties in the transcription level to RSV infection.

Reference | Related Articles | Metrics
A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone
WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing
2022, 21 (7): 2042-2054.   DOI: 10.1016/S2095-3119(21)63712-7
Abstract214)      PDF in ScienceDirect      
Herbivore-induced plant volatiles (HIPVs) play a key role in the interactions between plants and herbivorous insects, as HIPVs can promote or deter herbivorous insects’ behavior.  While aphids are common and serious phloem-feeding pests in farmland ecosystems, little is known about how aphids use their sensitive olfactory system to detect HIPVs.  In this study, the antennal transcriptomes of the aphid species Megoura crassicauda were sequenced, and expression level analyses of M. crassicauda odorant receptors (ORs) were carried out.  To investigate the chemoreception mechanisms that M. crassicauda uses to detect HIPVs, we performed in vitro functional studies of the ORs using 11 HIPVs reported to be released by aphid-infested plants.  In total, 54 candidate chemosensory genes were identified, among which 20 genes were ORs.  McraOR20 and McraOR43 were selected for further functional characterization because their homologs in aphids were quite conserved and their expression levels in antennae of M. crassicauda were relatively high.  The results showed that McraOR20 specifically detected cis-jasmone, as did its ortholog ApisOR20 from the pea aphid Acyrthosiphon pisum, while McraOR43 did not respond to any of the HIPV chemicals that were tested.  This study characterized the ability of the homologous OR20 receptors in the two aphid species to detect HIPV cis-jasmone, and provides a candidate olfactory target for mediating aphid behaviors.  
Reference | Related Articles | Metrics
Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum
HUANG Tian-yu, ZHANG Rui-bin, YANG Lu-lu, CAO Song, Frederic FRANCIS, WANG Bing, WANG Gui-rong
2022, 21 (5): 1414-1423.   DOI: 10.1016/S2095-3119(20)63577-8
Abstract236)      PDF in ScienceDirect      
Pea aphid, Acyrthosiphon pisum, is a serious pest of many different leguminous plants, and it mainly relies on its odorant receptors (Ors) to discriminate among host species.  However, less is known about the role that Ors play in the host plant location.  In this study, we identified a novel conserved odorant receptor clade by phylogenetic analysis, and conducted the functional analysis of ApisOr23 in A. pisum.  The results showed that the homologous Ors from A. pisum, Aphis glycines and Aphis gossypii share 94.28% identity in amino acid sequences.  Moreover, conserved motifs were analyzed using the annotated homologous Or23 from eight aphid species, providing further proof of the high conservation level of the Or23 clade.  According to the tissue expression pattern analysis, ApisOr23 was mainly expressed in the antennae.  Further functional study using a heterologous Xenopus expression system revealed that ApisOr23 was tuned to five plant volatiles, namely trans-2-hexen-1-al, cis-2-hexen-1-ol, 1-heptanol, 4´-ethylacetophenone, and hexyl acetate.  Among them, trans-2-hexen-1-al, which is one of the main volatile organic compounds released from legume plants, activated the highest response of ApisOr23.  Our findings suggest that the conserved Or23 clade in most aphid species might play an important role in host plant detection.

Reference | Related Articles | Metrics