Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Microbial community dynamics during composting of animal manures contaminated with arsenic, copper, and oxytetracycline
Ebrahim SHEHATA, CHENG Deng-miao, MA Qian-qian, LI Yan-li, LIU Yuan-wang, FENG Yao, JI Zhen-yu, LI Zhao-jun
2021, 20 (6): 1649-1659.   DOI: 10.1016/S2095-3119(20)63290-7
Abstract170)      PDF in ScienceDirect      
Effects of the heavy metal copper (Cu), the metalloid arsenic (As), and the antibiotic oxytetracycline (OTC) on bacterial community structure and diversity during cow and pig manure composting were investigated.  Eight treatments were applied, four to each manure type, namely cow manure with: (1) no additives (control), (2) addition of heavy metal and metalloid, (3) addition of OTC and (4) addition of OTC with heavy metal and metalloid; and pig manure with: (5) no additives (control), (6) addition of heavy metal and metalloid, (7) addition of OTC and (8) addition of OTC with heavy metal and metalloid.  After 35 days of composting, according to the alpha diversity indices, the combination treatment (OTC with heavy metal and metalloid) in pig manure was less harmful to microbial diversity than the control or heavy metal and metalloid treatments.  In cow manure, the treatment with heavy metal and metalloid was the most harmful to the microbial community, followed by the combination and OTC treatments.  The OTC and combination treatments had negative effects on the relative abundance of microbes in cow manure composts.  The dominant phyla in both manure composts included Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria.  The microbial diversity relative abundance transformation was dependent on the composting time.  Redundancy analysis (RDA) revealed that environmental parameters had the most influence on the bacterial communities.  In conclusion, the composting process is the most sustainable technology for reducing heavy metal and metalloid impacts and antibiotic contamination in cow and pig manure.  The physicochemical property variations in the manures had a significant effect on the microbial community during the composting process.  This study provides an improved understanding of bacterial community composition and its changes during the composting process. 
Reference | Related Articles | Metrics
Degradation mechanisms of oxytetracycline in the environment
LI Zhao-jun, QI Wei-ning, FENG Yao, LIU Yuan-wang, Ebrahim Shehata, LONG Jian
2019, 18 (9): 1953-1960.   DOI: 10.1016/S2095-3119(18)62121-5
Abstract132)      PDF in ScienceDirect      
Over the past few decades, the usage of oxytetracycline (OTC), a kind of antibiotic, has increased with the development of aquaculture and livestock breeding.  However, about 30–90% of the applied antibiotics are excreted as the parent compounds into the environment, especially with the application of animal manure to agricultural fields.  This large influx of antibiotics may lead to the destruction of the natural microbial ecological community and pose great threats to human beings through the food chain.  Therefore, the fate and toxicity of OTC in the environment are issues of great concern.  Degradation of OTC, including the non-biodegradation and biodegradation, and the biological toxicity of its degradation products or metabolites, are reviewed in this paper.  The non-biodegradation pathways include hydroxylation, quinonization, demethylation, decarbonylation, dehydration and secondary alcohol oxidation.  Light (particularly UV light), pH and oxidizing substances play important roles in non-biodegradation.  Biodegradation products include 4-epi-OTC (EOTC), 2-acetyl-2-decarboxy-amido-OTC (ADOTC), α-apo-OTC and β-apo-OTC.  EOTC is an epimer and identied except for the configuration of the C4 dimethylamino group of OTC.  Temperature and pH are the main factors affecting biodegradation pathways of OTC.  In addition, this review discusses concerns over the biological toxicity of OTC degradation products.
Reference | Related Articles | Metrics