导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((DAI Qi-gen[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality
WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen
2023, 22 (
7
): 2041-2053. DOI:
10.1016/j.jia.2022.08.045
Abstract
(
282
)
PDF in ScienceDirect
Light deficiency is a growing abiotic stress in rice production. However, few studies focus on shading effects on grain yield and quality of rice in East China. It is also essential to investigate proper nitrogen (N) application strategies that can effectively alleviate the negative impacts of light deficiency on grain yield and quality in rice. A two-year field experiment was conducted to explore the effects of shading (non-shading and shading from heading to maturity) and panicle N application (N
DP
, decreased panicle N rate; N
MP
, medium panicle N rate; N
IP
, increased panicle N rate) treatments on rice yield- and quality-related characteristics. Compared with non-shading, shading resulted in a 9.5–14.8% yield loss (
P
<0.05), mainly due to lower filled-grain percentage and grain weight.
N
MP
and N
IP
had higher (
P
<0.05) grain yield than N
DP
under non-shading, and no significant difference was observed in rice grain yield among N
DP
, N
MP
, and N
IP
under shading. Compared with N
MP
and N
IP
, N
DP
achieved less yield loss under shading because of the increased filled-grain percentage and grain weight. Shading reduced leaf photosynthetic rate after heading, as well as shoot biomass weight at maturity, shoot biomass accumulation from heading to maturity, and nonstructural carbohydrate (NSC) content in the stem at maturity (
P
<0.05). The harvest index and NSC remobilization reserve of N
DP
were increased under shading. Shading decreased (
P
<0.05) percentages of brown rice, milled rice, head rice, and amylose content while increasing (
P
<0.05) chalky rice percentage, chalky area, chalky degree, and grain protein. N
MP
demonstrated a better milling quality under non-shading, while
N
DP
demonstrated under shading.
N
DP
exhibited both lower chalky rice percentage, chalky area, and chalky degree under non-shading and shading, compared with N
MP
and N
IP
.
N
DP
under shading decreased amylose content and breakdown but increased grain protein content and setback, contributing to similar overall palatability to nonshading. Our results suggested severe grain yield and quality penalty of rice when subjected to shading after heading. N
DP
improved NSC remobilization, harvest index, and sink-filling efficiency and alleviated yield loss under shading. Besides, N
DP
would maintain rice’s milling, appearance, and cooking and eating qualities under shading. Proper N management with a decreased panicle N rate could be adopted to mitigate the negative effects of shading on rice grain yield and quality.
Reference
|
Related Articles
|
Metrics
Select
Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late
japonica
rice
ZHAO Can, HUANG Heng, QIAN Zi-hui, JIANG Heng-xin, LIU Guang-ming, XU Ke, HU Ya-jie, DAI Qi-gen, HUO Zhong-yang
2021, 20 (
6
): 1487-1502. DOI:
10.1016/S2095-3119(20)63362-7
Abstract
(
166
)
PDF in ScienceDirect
Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency. Few studies have examined the effects of reducing the times of nitrogen (RTN) application and reducing the nitrogen rate (RNR) of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields. Therefore, a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River, China. Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen. We found that under the same nitrogen application rate, the yield of RTN3 increased by 9.64 and 10.18% in rice varieties NJ9108 and NJ5718, respectively, compared with the farmers’ fertilizer practices (FFP). The nitrogen accumulation of RTN3 was the highest at heading stage, at 11.30 t ha
–1
across 2018 and 2019. Under the same nitrogen application rate, the N agronomic use efficiency (NAE), N physiological efficiency (NPE) and N recovery efficiency (NRE) of RTN3 were 8.1–21.28%, 8.51–41.76% and 0.28–14.52% higher than those of the other fertilization modes, respectively. RNR led to decreases in SPAD value, leaf area index (LAI), dry matter accumulation, nitrogen accumulation, and nitrogen use efficiency. These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen, and RNR1 could achieve the goals of saving cost and increasing resource use efficiency. Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.
Reference
|
Related Articles
|
Metrics
Select
Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage of
japonica
/
indica
hybrids
WEI Huan-he, YANG Yu-lin, SHAO Xing-yu, SHI Tian-yi, MENG Tian-yao, LU Yu, TAO Yuan, LI Xin-yue, DING En-hao, CHEN Ying-long, DAI Qi-gen
2020, 19 (
2
): 483-494. DOI:
10.1016/S2095-3119(19)62628-6
Abstract
(
143
)
PDF in ScienceDirect
The yield potential of japonica/indica hybrids (JIH) has been achieved over 13.5 t ha
–1
in large-scale rice fields, and some physiological traits for yield advantage of JIH over japonica inbred rice (JI) and indica hybrid rice (IH) were also identified. To date, little attention has been paid to morphological traits for yield advantage of JIH over JI and IH. For this reason, three JIH, three JI, and three IH were field-grown at East China (Ningbo, Zhejiang Province) in 2015 and 2016. Compared with JI and IH, JIH had 14.3 and 20.8% higher grain yield, respectively, attributed to its more spikelets per panicle and relatively high percentage of filled grains. The advantage in spikelets per panicle of JIH over JI and IH was shown in number of grains on the upper, middle, and lower branches. Compared with JI and IH, JIH had higher leaf area through leaf width and lower leaf angle of upper three leaves, higher leaf area index and leaf area per tiller at heading and maturity stages, higher stem weight per tiller and K and Si concentrations of stem at maturity, higher dry matter weight in leaf, stem, and panicle at heading and maturity stages, and higher biomass accumulation after heading and lower biomass translocation from stem during ripening. Leaf width of upper three leaves were correlated positively, while leaf angle of upper three leaves were correlated negatively with biomass accumulation after heading, stem weight per tiller, and per unit length. Our results indicated that the grain yield advantage of JIH was ascribed mainly to the more spikelets per panicle and relatively high percentage of filled grains. Higher leaf area through leaf width and more erect leaves were associated with improved biomass accumulation and stem weighing during ripening, and were the primary morphological traits underlying higher grain yield of JIH.
Reference
|
Related Articles
|
Metrics
Select
Morpho-physiological traits contributing to better yield performance of
japonica
/
indica
hybrids over
indica
hybrids under input-reduced practices
WEI Huan-he, MENG Tian-yao, GE Jia-lin, ZHANG Xu-bin, LU Yu, LI Xin-yue, TAO Yuan, DING En-hao, CHEN Ying-long, DAI Qi-gen
2020, 19 (
11
): 2643-2655. DOI:
10.1016/S2095-3119(20)63251-8
Abstract
(
122
)
PDF in ScienceDirect
It is widely reported that
japonica
/
indica
hybrids (JIH) have superior grain yield over other main varietal groups such as
indica
hybrids (IH) under sufficient resource inputs. To date, little attention has been paid to yield performance of JIH under input-reduced practices, and whether JIH could have better grain yield performance over IH under input-reduced practices. In this study, three JIH varieties and three IH varieties were compared in grain yield and their related morpho-physiological traits under two cultivation modes, i.e., conventional high-yielding method (CHYM) and double reductions in nitrogen rate and planting density (DRNP). Our results showed that JIH had 8.3 and 13.3% higher grain yield over IH under CHYM and DRNP, respectively. The superior grain yield of JIH over IH under DRNP was mainly attributed to larger sink size and improved sink filling efficiency. Three main morpho-physiological traits were concluded for better yield performance of JIH over IH under DRNP. Firstly, JIH had the reduced unproductive tillers growth, indicated by a higher percentage of productive tillers and the percentage of effective leaf area index (LAI) to total LAI at heading stage. Secondly, a synergistic increase in biomass accumulation and harvest index were achieved of JIH, supported by higher biomass accumulation and leaf area duration during the main growth periods, and improved non-structural carbohydrate (NSC) remobilization after heading. Thirdly, JIH had an improved canopy structure, showing as higher leaf area of upper three leaves and lower light extinction coefficient. Our results suggested that improved morpho-physiological traits of JIH could lead to better grain yield performance over IH under input-reduced practices.
Reference
|
Related Articles
|
Metrics
Select
Combined effect of shading time and nitrogen level on grain filling and grain quality in
japonica
super rice
WEI Hai-yan, ZHU Ying, QIU Shi, HAN Chao, HU Lei, XU Dong, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, CUI Pei-yuan, DAI Qi-gen, ZHANG Hong-cheng
2018, 17 (
11
): 2405-2417. DOI:
10.1016/S2095-3119(18)62025-8
Abstract
(
369
)
PDF
(1180KB)(
727
)
There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two
japonica
super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality. At a low N level (150 kg N ha
–1
, 150N), grain yield decreased (by 21.07–26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment. These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle. At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46–10.60%) due to the lower grain weight per panicle. The interaction of shading and N level had a significant effect on the number of primary and secondary branches. A high level of N (300 kg N ha
–1
, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments. In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T
99
) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18–5.91% in 150N BH. In 150N AH, the grain weight was 13.39–13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GR
mean
and GR
max
). In inferior grains, grain weight and GR
mean
had a tendency of 150N NS>150N BH>150N AH. Under shaded conditions, 300N decreased the grain weight due to lower GR
mean
both in superior and inferior grains. Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH. Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness. Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.
Reference
|
Related Articles
|
Metrics
Select
Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice
WEI Hai-yan, CHEN Zhi-feng, XING Zhi-peng, ZHOU Lei, LIU Qiu-yuan, ZHANG Zhen-zhen, JIANG Yan, HU Ya-jie, ZHU Jin-yan, CUI Pei-yuan, DAI Qi-gen, ZHANG Hong-cheng
2018, 17 (
10
): 2222-2234. DOI:
10.1016/S2095-3119(18)62052-0
Abstract
(
469
)
PDF in ScienceDirect
There is limited information about the influence of slow or controlled release fertilizer (S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs (polymer-coated urea (PCU), sulfur-coated urea (SCU), and urea formaldehyde (UF)) and two fertilization modes (both S/CRF and common urea (CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control (CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF>PCU>SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer>both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU>PCU>UF, and the trends of both S/CRF and CU as basal fertilizer>S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.
Reference
|
Related Articles
|
Metrics
Select
Comparison of agronomic performance between inter-sub-specific hybrid and inbred japonica rice under different mechanical transplanting methods
HU Ya-jie, WU Pei, ZHANG Hong-cheng, DAI Qi-gen, HUO Zhong-yang, XU Ke, GAO Hui, WEI Hai-yan, GUO Bao-wei, CUI Pei-yuan
2018, 17 (
04
): 806-816. DOI:
10.1016/S2095-3119(17)61819-7
Abstract
(
516
)
PDF in ScienceDirect
Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice (IHR) and inbred japonica rice (IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR (Yongyou 2640) and IJR (Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted (PS) and carpet seedlings mechanically transplanted (CS). Grain yield, yield components, leaf area index (LAI), leaf area duration (LAD), aboveground biomass, crop growth rate (CGR), nitrogen (N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.
Reference
|
Related Articles
|
Metrics
Select
Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River, China
XING Zhi-peng, WU Pei, ZHU Ming, QIAN Hai-jun, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, XU Ke, HUO Zhong-yang, DAI Qi-gen, ZHANG Hong-cheng
2017, 16 (
09
): 1923-1935. DOI:
10.1016/S2095-3119(16)61596-4
Abstract
(
1070
)
PDF in ScienceDirect
Several studies have demonstrated the effect of planting methods on rice yield, but information on the climate resources is limited. This study aims to reveal the effects of planting methods on climate resources associated with rice yield in a rice-wheat rotation system in the lower reaches of the Yangtze River, China. Field experiments were conducted in 2014 and 2015 with two japonica, two indica hybrid, and two
japonica-indica
hybrid varieties grown under three mechanized planting methods: carpet seedling of mechanical transplanting (CT), mechanical direct seeding (DS), and pot-hole seedling of mechanical transplanting (PT). The rice yield and total This study was financially supported by grants from the Major Independent Innovation Project in Jiangsu Province, China (CX(15)1002), the Agricultural Science and Technology Innovation Fund in Jiangsu Province, China (CX(12)1003-09), the National Key Research Program of China (2016YFD0300503), the Science and Technology Plan of Jiangsu Province, China (BE2015340), the Research Innovation Program for College Graduates of Jiangsu Province, China (KYLX15_1369), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.dry matter under PT were greater than those under CT and DS methods. Besides, the entire growth duration and daily production showed significant positive relations with rice yield. Compared with CT and DS, the effective accumulated temperature and cumulative solar radiation of rice under PT were higher in phenological phases. In addition, the dry matter/effective accumulated temperature and solar energy utilization of rice under CT and DS were higher during vegetative phase and lower during reproductive and grain filling phases in contrast to PT. The mean daily temperature and mean daily solar radiation in the entire growth duration showed significant positive correlation with rice yield, total dry matter, and harvest index. This study demonstrated that when the mean daily temperature is <25.1°C in vegetative phase and >20.1°C in grain filling phase, rice yield could be increased by selecting mechanized planting methods. Most varieties under PT method exhibited high yield and climate resources use efficiency compared with CT and DS. In conclusion, the PT method could be a better cultivation measure for high rice yield, accompanied with high temperature and solar radiation use efficiency in a rice-wheat rotation system in the lower reaches of the Yangtze River, China.
Reference
|
Related Articles
|
Metrics
Select
Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system
XING Zhi-peng, HU Ya-jie, QIAN Hai-jun, CAO Wei-wei, GUO Bao-wei, WEI Hai-yan, XU Ke, HUO Zhong-yang, ZHOU Gui-sheng, DAI Qi-gen, ZHANG Hong-cheng
2017, 16 (
07
): 1451-1466. DOI:
10.1016/S2095-3119(16)61562-9
Abstract
(
842
)
PDF in ScienceDirect
Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great importance not only for rice scientists but also for rice farmers to develop a high-yield production system under mechanical conditions in a rice-wheat rotation system. However, such traits are yet to be studied among rice varieties of
japonica-indica
hybrid rice (JIHR),
japonica
conventional rice (JCR) and
indica
hybrid rice (IHR). Field experiments were conducted in 2014 and 2015, where six cultivars of the three rice types JIHR, JCR and IHR were grown individually with PSMT, CSMT and MDS methods, under respective managements for each method to achieve the maximum attainable yield. Results showed that (i) the PSMT significantly increased grain yield of JIHR by 22.0 and 7.1%, of JCR by 15.6 and 3.7% and of IHR by 22.5 and 7.4%, compared to MDS and CSMT on average across the two years, respectively. The highest yield was produced by the combination of JIHR and PSMT; (ii) high yield under PSMT was mainly attributed to large sink capacity and high-efficient dry matter accumulation. With sufficient panicles per hectare, the increase of spikelet number per panicle, especially the increase in spikelet number of the secondary rachis-branches was determined to be the optimal approach for developing a large sink capacity for rice under PSMT. The optimal tillers development, large leaf area index at heading stage, and high leaf area duration, crop growth rate and net assimilation rate during grain-filling phase could be the cause of sufficient dry matter accumulation for rice under PSMT; (iii) moreover, the PSMT favored plant growth as well as enriched the stems plus sheaths during grain-filling phase, as compared with CSMT and MDS. These results suggest that PSMT may be an alternative approach to increasing grain yield in a rice-wheat rotation system in the lower reaches of the Yangtze River in China.
Reference
|
Related Articles
|
Metrics
Select
Effects of nitrogen level on yield and quality of
japonica
soft super rice
ZHU Da-wei, ZHANG Hong-cheng, GUO Bao-wei, XU Ke, DAI Qi-gen, WEI Hai-yan, GAO Hui, HU Ya-jie, CUI Pei-yuan, HUO Zhong-yang
2017, 16 (
05
): 1018-1027. DOI:
10.1016/S2095-3119(16)61577-0
Abstract
(
1060
)
PDF in ScienceDirect
Although studies on the balance between yield and quality of
japonica
soft super rice are limited, they are crucial for super rice cultivation.
In order to investigate the effects of nitrogen application rate on grain yield and rice quality, two
japonica
soft super rice varieties, Nanjing 9108 (NJ 9108) and Nanjing 5055 (NJ 5055), were used under seven N levels with the application rates of 0, 150, 187.5, 225, 262.5, 300, and 337.5 kg ha
–1
. With the increasing nitrogen application level, grain yield of both varieties first increased and then decreased. The highest yield was obtained at 300 kg ha
–1
. The milling quality and protein content increased, while the appearance quality, amylose content, gel consistency, cooking/eating quality, and rice flour viscosity decreased. Milling was significantly negatively related with the eating/cooking quality whereas the appearance was significantly positively related with cooking/eating quality. These results suggest that nitrogen level significantly affects the yield and rice quality of
japonica
soft super rice. We conclude that the suitable nitrogen application rate for
japonica
soft super rice, NJ 9108 and NJ 5055, is 270 kg ha
–1
, under which they obtain high yield as well as superior eating/cooking quality.
Reference
|
Related Articles
|
Metrics
Select
Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage
MENG Tian-yao, WEI Huan-he, LI Chao, DAI Qi-gen, XU Ke, HUO Zhong-yang, WEI Hai-yan, GUO Bao-wei, ZHNAG Hong-cheng
2016, 15 (
8
): 1751-1762. DOI:
10.1016/S2095-3119(15)61215-1
Abstract
(
1128
)
PDF in ScienceDirect
Understanding the morphological and physiological traits associated with improved filling efficiency in large-panicle rice varieties is critical to devise strategies for breeding programs and cultivation management practices. Information on such traits, however, remains limited. Two large-panicle varieties with high filled-grain percentage (HF) and two check large-panicle varieties with low filled-grain percentage (LF) were field-grown in 2012 and 2013. The number of spikelets per panicle of HF and LF both exceeded 300, and the filled-grain percentage (%) of HF was approximately 90, while that of LF was approximately 75 over the two years. The results showed that when the values were averaged across two years, HF yielded 12.9 t ha
–1
, while LF yielded 11.0 t ha
–1
. HF had a greater leaf area duration, biomass accumulation and transport of carbohydrates stored in the culm to the grains from heading to maturity compared with LF. HF exhibited a higher leaf photosynthetic rate, more green leaves on the culm, and higher root activity during filling phase, especially during the middle and late filling phases, in relative to LF. The length of HF for upper three leaves was significantly higher than that of LF, while the angle of upper three leaves on the main culm was less in both years. Meanwhile, specific leaf weight of HF was significantly higher when compared with LF. In addition, the grain filling characteristics of HF and LF were investigated in our study. Our results suggested that a higher leaf photosynthetic rate and root activity during filling phase, greater biomass accumulation and assimilate transport after heading, and longer, thicker and more erect upper three leaves were important morphological and physiological traits of HF, and these traits could be considered as selection criterion to develop large-panicle varieties with high filled-grain percentage.
Reference
|
Related Articles
|
Metrics
Select
Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China
WEI Huan-he, LI Chao, XING Zhi-peng, WANG Wen-ting, DAI Qi-gen, ZHOU Gui-shen, WANG Li, XU Ke, HUO Zhong-yang, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
2016, 15 (
1
): 50-62. DOI:
10.1016/S2095-3119(15)61082-6
Abstract
(
2191
)
PDF in ScienceDirect
Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone and evaluation of yield advantage is of practical importance for LMYS in this region. Fifteen LMYS, two high-yielding inbred japonica check varieties (CK-J) and two high-yielding hybrid indica check varieties (CK-I) were grown at Xinghua (119.57°E, 33.05°N) of Lixiahe region, Yangzhou (119.25°E, 32.30°N) of Yanjiang region, Changshu (120.46°E, 31.41°N) of Taihu Lake region, and Ningbo (121.31°E, 29.45°N) of Ningshao Plain in 2013 and 2014. The results showed that maturity dates of the 15 were later than the secure maturity date at Xinghua and 6, 14 and 15 LMYS were mature before the secure maturity date at Yangzhou, Changshu and Ningbo, respectively. One variety was identified as high-yielding variety among LMYS (HYYS) at Yangzhou, 8 HYYS in 2013 and 9 HYYS in 2014 at Changshu, 9 HYYS at Ningbo. HYYS here referred to the variety among LMYS that was mature before the secure maturity date and had at least 8% higher grain yield than both CK-J and CK-I at each experimental site. Grain yield of HYYS at each experimental site was about 12.0 t ha–1 or higher, and was significantly higher than CK varieties. High yield of HYYS was mainly attributed to larger sink size due to more spikelets per panicle. Plant height of HYYS was about 140 cm, and was significantly higher than check varieties. Significant positive correlations were recorded between duration from heading to maturity stage and grain yield, and also between whole growth periods and grain yield. HYYS had obvious advantage over check varieties in biomass accumulation and leaf area duration from heading to maturity stage. Comprehensive consideration about safe maturity and yield performance of LMYS at each experimental site, Taihu Lake region (representative site Changshu) and Ningshao Plain (representative site Ningbo) were thought suitable growing zones for LMYS in the lower reaches of Yangtze River. The main factors underlying high yield of HYYS were larger sink size, higher plant height, longer duration from heading to maturity stage and whole growth periods, and higher biomass accumulation and leaf area duration during grain filling stage.
Reference
|
Related Articles
|
Metrics