Peanut varieties are diverse globally, with their characters and nutrition determining the product quality. However, the comparative analysis and statistical analysis of key quality indicators for peanut kernels across the world remains relatively limited, impeding the comprehensive evaluation of peanut quality and hindering the industry development on a global scale. This study aimed to compare and analyze the apparent morphology, microstructure, single-cell structure, engineering and mechanical properties, as well as major nutrient contents of peanut kernels from 10 different cultivars representing major peanut-producing countries. The surface and cross-section microstructure of the peanut kernels exhibited a dense “blocky” appearance with a distinct cellular structure. The lipid droplets were predominantly spherical with a regular distribution within the cells. The single-cell structure of the kernels from these 10 peanut cultivars demonstrated varying morphologies and dimensions, which exhibited correlations with their mechanical and engineering properties. Furthermore, the mass loss versus temperature profiles of the peanut kernels revealed five distinct stages, corresponding to moisture loss, volatile loss, protein denaturation, and the degradation of various biomacromolecules. Variations were also observed in the lipid, protein, and sucrose contents, texture, bulk density, true density, porosity, geometric mean diameter, and sphericity among the different peanut varieties. This study establishes relationships and correlations among microstructure, engineering properties, and nutritional composition of commonly grown peanut varieties in major peanut-processing countries. The findings provide valuable insights into peanut quality evaluation, empowering the peanut industry to enhance their processing and product development efforts.
Nitrogen (N) is unevenly distributed throughout the soil and plant roots proliferate in N-rich soil patches. However, the relationship between the root response to localized N supply and maize N uptake efficiency among different genotypes is unclear. In this study, four maize varieties were evaluated to explore genotypic differences in the root response to local N application in relation to N uptake. A split-root system was established for hydroponically-grown plants and two methods of local N application (local banding and local dotting) were examined in the field. Genotypic differences in the root length response to N were highly correlated between the hydroponic and field conditions (r>0.99). Genotypes showing high response to N, ZD958, XY335 and XF32D22, showed 50‒63% longer lateral root length and 36‒53% greater root biomass in N-rich regions under hydroponic conditions, while the LY13 genotype did not respond to N. Under field conditions, the root length of the high-response genotypes was found to increase by 66‒75% at 40‒60 cm soil depth, while LY13 showed smaller changes in root length. In addition, local N application increased N uptake at the post-silking stage by 16‒88% in the high-response genotypes and increased the grain yield of ZD958 by 10‒12%. Moreover, yield was positively correlated with root length at 40‒60 cm soil depth (r=0.39). We conclude that local fertilization should be used for high-response genotypes, which can be rapidly identified at the seedling stage, and selection for “local-N responsive roots” can be a promising trait in maize breeding for high nitrogen uptake efficiency.