Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Synonymous codon usage pattern in model legume Medicago truncatula
SONG Hui, LIU Jing, CHEN Tao, NAN Zhi-biao
2018, 17 (09): 2074-2081.   DOI: 10.1016/S2095-3119(18)61961-6
Abstract360)      PDF in ScienceDirect      
Synonymous codon usage pattern presumably reflects gene expression optimization as a result of molecular evolution.  Though much attention has been paid to various model organisms ranging from prokaryotes to eukaryotes, codon usage has yet been extensively investigated for model legume Medicago truncatula.  In present study, 39 531 available coding sequences (CDSs) from M. truncatula were examined for codon usage bias (CUB).  Based on analyses including neutrality plots, effective number of codons plots, and correlations between optimal codons frequency and codon adaptation index, we conclude that natural selection is a major driving force in M. truncatula CUB.  We have identified 30 optimal codons encoding 18 amino acids based on relative synonymous codon usage.  These optimal codons characteristically end with A or T, except for AGG and TTG encoding arginine and leucine respectively.  Optimal codon usage is positively correlated with the GC content at three nucleotide positions of codons and the GC content of CDSs.  The abundance of expressed sequence tag is a proxy for gene expression intensity in the legume, but has no relatedness with either CDS length or GC content.  Collectively, we unravel the synonymous codon usage pattern in M. truncatula, which may serve as the valuable information on genetic engineering of the model legume and forage crop.
 
Reference | Related Articles | Metrics
How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China?
ZHANG Ming, CHEN Tao, Hojatollah Latifmanesh, FENG Xiao-min, CAO Tie-hua, QIAN Chun-rong, DENG Ai-xing, SONG Zhen-wei, ZHANG Wei-jian
2018, 17 (08): 1745-1757.   DOI: 10.1016/S2095-3119(17)61877-X
Abstract508)      PDF in ScienceDirect      
A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesis-silking interval (ASI), and grain yield formation of two types of modern maize hybrids (Zhongdan 909 (ZD909) as tolerant hybrid to crowding stress, Jidan 209 (JD209) and Neidan 4 (ND4) as intolerant hybrids to crowding stress) in Northeast China.  Plant densities of 4.50×104 (D1), 6.75×104 (D2), 9.00×104 (D3), 11.25×104 (D4), and 13.50×104 (D5) plants ha–1 had no significant effects on initial time of tassel and ear differentiation of maize.  Instead, higher plant density delayed the tassel and ear development during floret differentiation and sexual organ formation stage, subsequently resulting in ASI increments at the rate of 1.2–2.9 days on average for ZD909 in 2013–2014, 0.7–4.2 days for JD209 in 2013, and 0.5–3.7 days for ND4 in 2014, respectively, under the treatments of D2, D3, D4, and D5 compared to that under the D1 treatment.  Total florets, silking florets, and silking rates of ear showed slightly decrease trends with the plant density increasing, whereas the normal kernels seriously decreased at the rate of 11.0–44.9% on average for ZD909 in 2013–2014, 2.0–32.6% for JD209 in 2013, and 9.7–28.3% for ND4 in 2014 with the plant density increased compared to that under the D1 treatment due to increased florets abortive rates.  It was also observed that 100-kernel weight of ZD909 showed less decrease trend compared that of JD209 and ND4 along with the plant densities increase.  As a consequence, ZD909 gained its highest grain yield by 13.7 t ha–1 on average at the plant density of 9.00×104 plants ha–1, whereas JD209 and ND4 reached their highest grain yields by 11.7 and 10.2 t ha–1 at the plant density of 6.75×104 plants ha–1, respectively.  Our experiment demonstrated that hybrids with lower ASI, higher kernel number potential per ear, and relative constant 100-kernel weight (e.g., ZD909) could achieve higher yield under dense planting in high latitude area (e.g., Northeast China).
 
Reference | Related Articles | Metrics
Research progress on the breeding of japonica super rice varieties in Jiangsu Province, China
WANG Cai-lin, ZHANG Ya-dong, ZHU Zhen, CHEN Tao, ZHAO Qing-yong, ZHONG Wei-gong, YANG Jie, YAO Shu, ZHOU Li-hui, ZHAO Ling, LI Yu-sheng
2017, 16 (05): 992-999.   DOI: 10.1016/S2095-3119(16)61580-0
Abstract1173)      PDF in ScienceDirect      
In this study we report the results of a decade-long breeding program for japonica super rice made by Nanjing Branch of Chinese National Center for Rice Improvement in Jiangsu Academy of Agricultural Sciences.  We concluded that selection of parents with good comprehensive traits and complementary advantages and disadvantages of both parents in the hybrid combination, and early selection of high heritability traits in earlier segregating generations could significantly improve the breeding efficiency.  The use of closely-linked functional markers in pyramiding of multiple genes could greatly increase breeding efficiency, avoiding time-consuming and laborious steps that were used in traditional breeding program.  It is also important to coordinate the yield components with variety characteristics such as yield stability, wide adaptability, lodging resistance, and an attractive grain appearance during late growth stage of rice.
Reference | Related Articles | Metrics
Optimization of Two-Dimensional Gel Electrophoresis for Kenaf Leaf Proteins
CHEN Tao, QI Jian-min, XU Jian-tang, CHEN Pin-pin, TAO Ai-fen, CHEN Fu-cheng , CHEN Wei
2011, 10 (12): 1842-1850.   DOI: 10.1016/S1671-2927(11)60184-3
Abstract1711)      PDF in ScienceDirect      
To establish a suitable and effective protocol of protein extraction for two-dimensional gel electrophoresis (2-DE) analysis in kenaf leaf tissues, three extraction methods (trichloroacetic acid/acetone, urea/thiourea, and phenol extraction methods) were applied to the extraction of kenaf leaf protein. The results were compared in regard to protein extraction efficiency, sodiumdodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and 2-DE gels. Furthermore, the 2-DE system was optimized for four aspects: the pH range of IPG (immobilized pH gradient) stripes, sampling methods, sample volumes, and concentration of polyacrylamide gels. The data presented showed that the phenol extraction method is the best method to perform 2-DE analysis of kenaf leaf protein. The protein extracted from phenol extraction method reached the purity of (26.40±0.859)%, showed (25.67±1.53) protein bands in one dimension SDS-PAGE gels, and (1 374±54.44) protein spots on 2-DE gels. The research also indicates that kenaf leaf protein spots were distributed mainly within the pH range of 4-8. More clear background with a better distribution effect and many protein spots could be obtained on 2-DE gels under the conditions of active rehydration loading, 24 cm IPG strips (linear pH gradient of 4-7), 1.4 mg samples, and 12% SDS-PAGE gels.
Reference | Related Articles | Metrics