Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton
Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang
2025, 24 (5): 1671-1687.   DOI: 10.1016/j.jia.2024.09.017
Abstract60)      PDF in ScienceDirect      

Two cotton research institute (CRI) near-isogenic lines, CRI-12 glanded and CRI-12 glandless, were used to pinpoint potential genes and metabolic pathways linked to gossypol biosynthesis through transcriptome sequencing.  We discovered more than 235 million clean reads and 1,184 differentially expressed genes (DEGs).  Consecutively, we conducted a weighted gene co-expression network analysis and found a strong correlation between white and yellow modules containing GhTPS (GH_D09G0090) and GhCYP (GH_D05G2016) hub genes with the gossypol content.  Importance of the GhTPS and GhCYP genes was demonstrated using RT-qPCR, virus-induced gene silencing (VIGS), and target metabolite analysis.  Silencing these genes resulted in fewer glands on both leaves and stems two weeks after the infection compared to the wild type.  In addition, 152 metabolites were identified through targeted metabolite profiling.  Differential metabolite screening revealed 12 and 18 significantly different metabolites in TRV:GhTPS and TRV:GhCYP plants vs. the control group, respectively, showing a reduction in the accumulation of metabolites compared to the control.  Content of hemigossypol, the final product of gossypol biosynthesis, was also reduced, as revealed by target metabolite analysis, suggesting the role of these genes in the gossypol biosynthetic pathway.  Furthermore, a highly significant difference in gossypol content between the glanded and glandless lines was recorded.  Findings of this study reveal a strong link between the gossypol content and GhTPS and GhCYP hub genes, suggesting their role in the gossypol biosynthetic pathway to reduce the accumulation of hemigossypol, which may offer new comprehension into the regulatory checkpoints of the gossypol biosynthesis pathway in cotton.

 

Reference | Related Articles | Metrics
Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize
Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang
2024, 23 (7): 2196-2210.   DOI: 10.1016/j.jia.2024.02.009
Abstract163)      PDF in ScienceDirect      
Soil salinization poses a threat to maize production worldwide, but the genetic mechanism of salt tolerance in maize is not well understood.  Therefore, identifying the genetic components underlying salt tolerance in maize is of great importance.  In the current study, a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.  In total, 125 QTLs were detected using a high-density genetic bin map, with one to five QTLs explaining 6.05–32.02% of the phenotypic variation for each trait.  The total phenotypic variation explained (PVE) by all detected QTLs ranged from 6.84 to 63.88% for each trait.  Of all 125 QTLs, only three were major QTLs distributed in two genomic regions on chromosome 6, which were involved in three salt tolerance-related traits.  In addition, 10 pairs of epistatic QTLs with additive effects were detected for eight traits, explaining 0.9 to 4.44% of the phenotypic variation.  Furthermore, 18 QTL hotspots affecting 3–7 traits were identified.  In one hotspot (L5), a gene cluster consisting of four genes (ZmNSA1, SAG6, ZmCLCg, and ZmHKT1;2) was found, suggesting the involvement of multiple pleiotropic genes.  Finally, two important candidate genes, Zm00001d002090 and Zm00001d002391, were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.  Zm00001d002090 encodes a calcium-dependent lipid-binding (CaLB domain) family protein, which may function as a Ca2+ sensor for transmitting the salt stress signal downstream, while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.  Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.


Reference | Related Articles | Metrics