Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Developing a duplex ARMS-qPCR method to differentiate genotype I and II African swine fever viruses based on their B646L genes
DING Lei-lei, REN Tao, HUANG Lian-yu, Weldu TESFAGABER, ZHU Yuan-mao, LI Fang, SUN En-cheng, BU Zhi-gao, ZHAO Dong-ming
2023, 22 (5): 1603-1607.   DOI: 10.1016/j.jia.2023.02.035
Abstract412)      PDF in ScienceDirect      

African swine fever (ASF), caused by the African swine fever virus (ASFV), is an acute, hemorrhagic, and contagious disease of domestic pigs and wild boars.  The disease is notifiable and listed by the World Organization for Animal Health (WOAH) (Wang N et al. 2019).  The outcomes of ASF infection can be peracute, acute, subacute, and chronic, depending on the virulence of ASFVs.  According to the report of WOAH (https://www.woah.org/app/uploads/2022/12/asf-report24.pdf), from January 2020 to December 2022, ASF led to more than  2 million pig losses.  Currently, ASFV persists continuously in more than 23 countries and poses a serious threat to the global swine industry.  ASF invaded China on 3 August, 2018, caused by genotype II virulent Georgia-07-like ASFVs (Wen et al. 2019; Zhao et al. 2019; Wang et al. 2020; Wang L et al. 2022).  An experimental study showed that Georgia-07-like ASFV HLJ/18 isolated in China is highly lethal and efficiently transmissible in domestic pigs (Zhao et al. 2019; Jiang et al. 2021).  During the past four years, genotype II Georgia-07-like ASFVs dominantly spread in China.  However, the low virulent genotype II and I ASFVs have been successively reported in China in 2020 and 2021, respectively (Sun et al. 2021a, b; Shi et al. 2022).  Compared with the high virulent genotype II HLJ/18 strain, the low virulent genotype I and II ASFVs had lower virulence and high transmissibility in pigs and induced persistent and chronic infection showing irregular virus shedding at low levels (Sun et al. 2021a, b; Tsegay et al. 2022; Wang P et al. 2022).  Notably, when different genotype I and genotype II viruses infect the same pig in the field, a novel virus may be generated through viral genome recombination, which brings new problems and challenges for the prevention and control of ASF in China.  Thus, a diagnostic method that differentiates genotype I and II ASFVs with high sensitivity and stability is urgently needed and will be helpful for the prevention and control of ASF in China.  

ASFVs have been divided into at least 24 genotypes based on the C-terminus of the B646L gene with 478 nt (Bastos et al. 2003).  B646L gene is one of the most used target genes for ASF diagnosis, which is also the target gene for the WOAH recommended PCR and fluorescent quantitative PCR assays (Agüero et al. 2003; King et al. 2003).  Sanger sequencing of targeted amplification of the B646L genes is the main genotyping approach for ASFVs.  Recently, Li et al. (2022) developed the duplex real-time PCR assay based on the ASFV E296R gene, and Cao et al. (2022) established the TaqMAN-MGB probe assay based on the N-terminal sequences of the B646L gene (Cao et al. 2022; Li et al. 2022), which could distinguish genotype I and II ASFVs with detection limits of 10 copies.  However, the target genes or regions in their methods were out of ASFV genotyping regions.  

Single nucleotide polymorphism (SNP) is a single base change at a specific position in the genome of different individuals and can be used as a genotyping marker for the detection of different individual genotypes (Gut 2001).  The amplification refractory mutation system (ARMS), also named Allele-specific PCR (AS-PCR), relies on the extension of primer only when its 3´ end has a perfect complement to the template (Wang M et al. 2019).  ARMS-qPCR technology has been developed and widely used in SNP detection and genotyping (Ochsenreither et al. 2010; Shi et al. 2013; Wang M et al. 2019).  Compared with other assays for SNP detection and genotyping, ARMS-qPCR has the advantage of low-cost, simple operation, high sensitivity, and rapid and real-time detection.

Here, 126 complete or partial B646L genes of ASFVs, including 78 genotype I and 48 genotype II viruses, were obtained from the GenBank database, and their information is shown in Appendix A.  After analyzing these genes by the MegAlign Software (DNAStar), there were 4 SNPs in the C-terminus of the B646L gene, differentiating genotype I viruses from genotype II viruses (Fig. 1-A).  Two SNPs at sites 1 656 and 1 710 were used to design primers and probes for differential detection of genotype I and II ASFVs (Fig. 1-A).  As previously described (Huang et al. 1992; Liu et al. 2012), primers (I F, II F and R) and probes (probe 1 and probe 2) were designed with the targeted gene sequences using Primer 5 Software (Fig. 1-B; Appendix B).  The duplex ARMS-qPCR reaction system volume was 25 μL: 12.5 μL of 2× HyperProbe Mixture (GENFINE), 0.5 μL of I F, II F and R primers (10 μmol L–1), 0.5 μL of probe 1 and probe 2 (10 μmol L–1), 5 μL of template DNA, and 5 μL of ddH2O.  The duplex ARMS-qPCR was performed by using the Bio-Rad CFX96 Touch Real-Time PCR Detection System with the following reaction conditions: 95°C for 30 s, followed by 40 cycles of 95°C for 10 s, and 60°C for 30 s.  Fluorescence signal was detected at the end of each cycle of extension step.  For the positive sample of genotype I ASFV, FAM and Cy5 fluorophores could be detected; however, for the positive sample of genotype II ASFV, only FAM fluorophore could be detected (Fig. 1-B).  

The standard curve test revealed that for the standard plasmids of genotype I ASFV, the slopes were –3.3825 for Cy5 and –3.1906 for FAM; the correlation coefficient R2 was 0.999 for Cy5 and 0.998 for FAM; the amplification efficiency was 97.53% for Cy5 and 100.06% for FAM, respectively (Fig. 1-C); for the standard plasmids of genotype II ASFV, the slope was –3.2983 for FAM, the correlation coefficient R2 was 0.992 for FAM, the amplification efficiency was 100.01% for FAM, whereas Cy5 fluorophore could not be detected (Fig. 1-C).  In addition, the sensitivity of the duplex ARMS-qPCR was 10 copies per reaction for both genotype I and II ASFVs (Fig. 1-D).  Thus, these results indicated that the duplex ARMS-qPCR assay has high efficiency and sensitivity.  

We then evaluated the specificity of the duplex ARMS-qPCR.  The nucleic acids of 7 other swine viruses, including PRRSV, CSFV, PRV, PCV2, PEDV, TGEV, and PoRV, were used as templates.  There were 3 amplification curves obtained for genotype I ASFV (FAM and Cy5 signals) and II ASFV (FAM signal), whereas no amplification curve was recorded for the nucleic acids of PRRSV, CSFV, PRV, PCV2, PEDV, TGEV, and PoRV, as well as genotype II ASFV (Cy5 signal) and ddH2O (Fig. 1-E).  The results demonstrated that the duplex ARMS-qPCR has a good specificity without cross-reactivity with other swine viruses.

The results of the stable detection limit test showed that for the standard plasmids of genotype I ASFV, all 12 replicates were tested positive at the dilution of 10 copies, while 7/12 replicates were tested positive at the dilution of 5 copies (Fig. 1-F); for the standard plasmids of genotype II ASFV, all 12 replicates were tested positive at the dilution of 10 copies, while 6/12 replicates were tested positive at the dilution of 1 copy (Fig. 1-F).  Thus, the stable detection limit of the duplex ARMS-qPCR was 10 copies per reaction for both genotype I and II ASFVs (Fig. 1-F).

We further assessed the repeatability and reproducibility of the duplex ARMS-qPCR.  The assay tested the standard plasmids of 3 concentrations (106, 104, and 102 copies).  For the standard plasmids of genotype I ASFV, the intra- and inter-assay variation of Ct value for the duplex ARMS-qPCR ranged from 0.07 to 0.93% and 1.2 to 2.17% in FAM fluorescence channel and from 0.38 to 1.02% and 0.85 to 1.27% in Cy5 fluorescence channel, respectively (Table 1).  For the standard plasmids of genotype II ASFV, the intra- and inter-assay variation of Ct value for the duplex ARMS-qPCR ranged from 0.27 to 0.61% and 0.77 to 1.07% in FAM fluorescence channel (Table 1).  These findings suggested that the duplex ARMS-qPCR assay has satisfactory repeatability and reproducibility.

Finally, we evaluated the duplex ARMS-qPCR compared with WOAH-qPCR.  A total of 40 samples were detected using both assays, including blood, oral and rectal swabs, tissues, and cell cultures from pigs or PAMs infected by genotype I and II ASFVs.  Animal studies have evaluated the virulence and transmissibility of genotype I ASFV SD/DY-I/21 and genotype II virus HLJ/18 (Zhao et al. 2019; Sun et al. 2021a), respectively.  The results showed that 36 samples, including 18 of genotype I ASFV and 18 of genotype II ASFV were detected to be positive and differentiated by the duplex ARMS-qPCR, which were consistent with the results of the WOAH-qPCR (Appendix C).  

In summary, we developed a duplex ARMS-qPCR assay based on ASFV genotyping region of B646L gene, which can effectively differentiate genotype I and II ASFVs.  The assay had high sensitivity and specificity and exhibited good results in detecting samples, including blood, oral and rectal swabs, tissues, and cell culture.  Whether our method could be used for differentiating other genotypes of ASFVs is needed for further evalution.  However, just genotype I and II ASFVs are spreading outside Africa.  Thus, our method will provide an additional epidemiological investigation tool to implement effective ASFV control and prevention.

Reference | Related Articles | Metrics
Molecular epidemiological study of animal rabies in Kazakhstan
Gulzhan N. YESSEMBEKOVA, XIAO Shuang, Assem ABENOV, Talgat KARIBAEV, Alexandr SHEVTSOV, Amirgazin ASYLULAN, Yersyn Y. MUKHANBETKALIYEV, SHUAI Lei, BU Zhi-gao, Sarsenbay K. ABDRAKHMANOV
2023, 22 (4): 1266-1275.   DOI: 10.1016/j.jia.2022.11.011
Abstract174)      PDF in ScienceDirect      

Rabies is a serious public health issue in Kazakhstan, with high economic impact and social burden.  As part of a routine surveillance, 31 rabies-positive brain specimens taken from livestock (cattle) and carnivores (dogs, foxes, and cats) during 2013–2021 were subject to viral sequencing.  Phylogenetic and Bayesian analysis were performed using obtained rabies virus (RABV) sequences.  All 31 strains of RABV candidate belonged to the Cosmopolitan clade, of which 30 strains belonged to steppe-type subclade, and 1 dog strain belonged to Other subclade.  The 31 strains did not diverge from RABV strains in Kazakhstan and neighboring countries, including Russia, Mongolia, and China, suggesting that animal rabies has close relationship and transmission between borders.  Fox-originated strains and cattle strains shared similar sequence signature, and some animal rabies cases had space–time intersection, showing that infected foxes were a major transmission source of cattle rabies in different Kazakhstan regions.  Besides, free-roaming dogs played a pivotal role in rabies epizootics of cattle in Kazakhstan.  The recent spread of animal rabies presents an increasing threat to public health, and provides updated information for improving current control and prevention strategies at the source for Kazakhstan and neighboring countries.

Reference | Related Articles | Metrics
Virucidal activity of MICRO-CHEM PLUS against African swine fever virus
JIANG Cheng-gang, SUN Ying, ZHANG Fan, AI Xin, LU Ming, QIN Jia-lin, ZHANG Xian-feng, WANG Jing-fei, BU Zhi-gao, ZHAO Dong-ming, HE Xi-jun
2023, 22 (11): 3560-3563.   DOI: 10.1016/j.jia.2023.09.021
Abstract270)      PDF in ScienceDirect      
Reference | Related Articles | Metrics
Viricidal activity of several disinfectants against African swine fever virus
JIANG Cheng-gang, SUN Ying, ZHANG Fan, AI Xin, FENG Xiao-ning, HU Wei, ZHANG Xian-feng, ZHAO Dong-ming, BU Zhi-gao, HE Xi-jun
2021, 20 (11): 3084-3088.   DOI: 10.1016/S2095-3119(21)63631-6
Abstract114)      PDF in ScienceDirect      
Prevention of African swine fever, a disease caused by African swine fever virus (ASFV), requires maintenance of high biosecurity standards, which principally relies on disinfection.  Finding the perfect disinfectant against ASFV is difficult because of the lack of relevant data.  Therefore, we aimed to find the most effective disinfectant and to optimise its concentration as well as contact time to confirm the viricidal effect against ASFV in vitro.  We evaluated the viricidal activity of three concentrations each of six common disinfectants against ASFV using immersion disinfection assay (IDA) and spray disinfection assay (SDA); the concentrations of these disinfectants at which complete viral inactivation occurred were almost same as the manufacturer-recommended concentrations, but the exposure times for viral inactivation are different.  The following disinfectants (assay: concentration, exposure time) showed complete inactivation: iodine and acid mixed solution (IDA/SDA: 0.5%, 10 min); compound potassium peroxymonosulfate (IDA: 0.25%, 30 min; SDA: 0.25%, 60 min); citric acid (IDA: 0.25%, 60 min; SDA: 0.5%, 60 min); sodium dichloroisocyanurate (IDA: 0.125%, 60 min; SDA: 0.25%, 60 min); and glutaral ang deciquam (IDA/SDA: 0.2%, 60 min); and deciquam (IDA/SDA: 0.5%, 60 min).  However, in the presence of organic material contamination, disinfectants did not show a marked inactivation effect.  Therefore, disinfection procedures should be performed in two steps: thorough mechanical cleaning followed by application of disinfectant.  In conclusion, all the tested disinfectants can inactivate ASFV; these can be used as alternative disinfectants to enhance biosecurity.
 
Related Articles | Metrics
Generation of recombinant rabies virus ERA strain applied to virus tracking in cell infection
ZHAO Dan-dan, SHUAI Lei, GE Jin-ying, WANG Jin-liang, WEN Zhi-yuan, LIU Ren-qiang, WANG Chong, WANG Xi-jun, BU Zhi-gao
2019, 18 (10): 2361-2368.   DOI: 10.1016/S2095-3119(19)62717-6
Abstract156)      PDF in ScienceDirect      
The mechanism of rabies virus (RABV) infection still needs to be further characterized.  RABV particle with self-fluorescent is a powerful viral model to visualize the viral infection process in cells.  Herein, based on a reverse genetic system of the Evelyn-Rokitnicki-Abelseth (rERA) strain, we generated a recombinant RABV rERA-N/mCherry strain that stably expresses an additional ERA nucleoprotein that fuses with the red fluorescent protein mCherry (N/mCherry).  The rERA-N/mCherry strain retained growth property similar to the parent strain rERA in vitro.  The N/mCherry expression showed genetic stability during passage into mouse neuroblastoma (NA) cells and did not change the virulence of the vector.  The rERA-N/mCherry strain was then utilized as a visual viral model to study the RABV-cell binding and internalization.  We directly observed the red self-fluorescence of rERA-N/mCherry particles binding to the cell surface, and further co-localizing with clathrin in the early stage of infection in NA cells by fluorescence microscopy.  Our results showed that the rERA-N/mCherry strain uses clathrin-dependent endocytosis to enter cells, which is consistent with the well-known mechanism of RABV invasion.  The recombinant RABV rERA-N/mCherry thus appears to have the potential to be an effective viral model to further explore the fundamental molecular mechanism of rabies neuropathogenesis.
Reference | Related Articles | Metrics
Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels
Liu Ren-qiang, Ge Jin-ying, Wang Jin-ling, Shao Yu, Zhang Hui-lei, Wang Jin-liang, Wen Zhi-yuan, Bu Zhi-gao
2017, 16 (10): 2264-2273.   DOI: 10.1016/S2095-3119(17)61660-5
Abstract578)      PDF in ScienceDirect      
Middle East respiratory syndrome coronavirus (MERS-CoV), a member of the Coronaviridae family, is the causative pathogen for MERS that is characterized by high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations.  Currently, there are no approved treatment regimens or vaccines for MERS.  Here, we generated recombinant nonvirulent Newcastle disease virus (NDV) LaSota strain expressing MERS-CoV S protein (designated as rLa-MERS-S), and evaluated its immunogenicity in mice and Bactrian camels.  The results revealed that rLa-MERS-S showed similar growth properties to those of LaSota in embryonated chicken eggs, while animal immunization studies showed that rLa-MERS-S induced MERS-CoV neutralizing antibodies in mice and camels.  Our findings suggest that recombinant rLa-MERS-S may be a potential MERS-CoV veterinary vaccine candidate for camels and other animals affected by MERS.
Reference | Related Articles | Metrics