导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((BAI Yan[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Elucidation of the structure, antioxidant, and interfacial properties of flaxseed proteins tailored by microwave treatment
YU Xiao, DUAN Zi-qiang, QIN Xiao-peng, ZHU Ying-ying, HUANG Feng-hong, PENG Deng-feng, BAI Yan-hong, DENG Qian-chun
2023, 22 (
5
): 1574-1589. DOI:
10.1016/j.jia.2023.04.021
Abstract
(
306
)
PDF in ScienceDirect
The microwave treatment is commonly applied to flaxseed to release nutrients, inactivate enzymes, remove cyanogens, and intensify flavors. The current study aimed to explore the influences of microwave exposure on the antioxidant and interfacial properties of flaxseed protein isolates (FPI), focusing on the altering composition and molecular structure. The results showed that after microwave exposure (700 W, 1–5 min), more compact assembly of storage proteins and subsequent permeation by membrane fragments of oil bodies occurred for cold-pressing flaxseed flours. Moreover, the particle sizes of FPI was progressively reduced with the decrement ranged from 37.84 to 60.66% , whereas the zeta potential values initially decreased and then substantially recovered during 1–5 min of microwave exposure. The conformation unfolding, chain cross-linking, and depolymerization were sequentially induced for FPI based on the analysis of fluorescence emission spectra, secondary structure, and protein subunit profiles, thereby affecting the dispersion or aggregation properties between albumin and globulin fractions in FPI. Microwave exposure retained specific phenolic acids and superior antioxidant activities of FPI. The inferior gas–water interface absorption and the loose/porous assembly structure were observed for the foams prepared by FPI, concurrent with obviously shrinking foaming properties upon microwave exposure. Improving oil–water interface activities of FPI produced the emulsion droplets with descending sizes and dense interface coating, which were then mildly destabilized due to the lipid leakage and weakened rheological behavior with microwave exposure extended to 5 min. Our findings elucidated that microwave treatment could tailor the application functionality of protein fractions in flaxseed based on their structural remodeling.
Reference
|
Related Articles
|
Metrics
Select
Identification of SNPs and expression patterns of
FZD3
gene and its effect on wool traits in Chinese Merino sheep (Xinjiang Type)
ZHAO Bing-ru, FU Xue-feng, TIAN Ke-chuan, HUANG Xi-xia, DI Jiang, BAI Yan, XU Xin-ming, TIAN Yue-zhen, WU Wei-wei, ABLAT Sulayman, ZENG Wei-dan, HANIKEZI Tulafu
2019, 18 (
10
): 2351-2360. DOI:
10.1016/S2095-3119(19)62735-8
Abstract
(
153
)
PDF in ScienceDirect
As a member of the Frizzled family, Frizzled3 (
FZD3
) is a receptor of the canonical Wnt signaling pathway and plays a vital role in mammalian hair follicle developmental processes. However, its effects on wool traits are not clear. The objectives of this study were to identify the single nucleotide polymorphisms (SNPs) and the expression patterns of
FZD3
gene, and then to determine whether it affected wool traits of Chinese Merino sheep (Xinjiang Type) or not. PCR-single stranded conformational polymorphism (PCR-SSCP) and sequencing were used to identify mutation loci, and general linear model (GLM) with SAS 9.1 was used for the association analysis between wool traits and SNPs. Quantitative real-time PCR (qRT-PCR) was used to investigate
FZD3
gene expression levels. The results showed that six exons of
FZD3
gene were amplified and two mutation loci were identified in exon 1 (NC_019459.2: g.101771685 T>C (SNP1)) and exon 3 (NC_019459.2: g.101810848, A>C (SNP2)), respectively. Association analysis showed that SNP1 was significantly associated with mean fiber diameter (MFD) (
P
=0.04) and live weight (LW) (
P
=0.0004), SNP2 was significantly associated with greasy fleece weight (GFW) (
P
=0.04). The expression level of
FZD3
gene in skin tissues of the superfine wool (SF) group was significantly lower (
P
<0.05) than that of the fine wool (F) group. Moreover, it had a higher expression level (
P
<0.01) in skin tissues than in other tissues of Chinese Merino ewes. While, its expression level had a fluctuant expression in skin tissues at different developmental stages of embryos and born lambs, with the highest expression levels (
P
<0.01) at the 65th day of embryos. Our study revealed the genetic relationship between
FZD3
variants and wool traits and two identified SNPs might serve as potential and valuable genetic markers for sheep breeding and lay a molecular genetic foundation for sheep marker-assisted selection (MAS).
Reference
|
Related Articles
|
Metrics
Select
Occurrence and molecular characterization of Potato spindle tuber viroid (PSTVd) isolates from potato plants in North China
QIU Cai-ling, ZHANG Zhi-xiang, LI Shi-fang, BAI Yan-ju, LIU Shang-wu, FAN Guo-quan, GAO Yan-ling, ZHANG Wei, ZHANG Shu, Lü Wen-he, Lü Dian-qiu
2016, 15 (
2
): 349-363. DOI:
10.1016/S2095-3119(15)61175-3
Abstract
(
2260
)
PDF in ScienceDirect
China is the largest potato producing country worldwide, with this crop representing the fourth largest staple food crop in China. However, the steady presence of Potato spindle tuber viroid (PSTVd) over the past five decades has a significant economic impact on potato production. To determine why PSTVd control measures have been ineffective in China, more than 1 000 seed potatoes collected between 2009 and 2014 were subjected to PSTVd detection at the Supervision and Testing Center for Virus-free Seed Potatoes Quality, Ministry of Agriculture, China. A high PSTVd infection rate (6.5%) was detected among these commercial seed potatoes. Some breeding lines of potato collected from 2012 to 2015 were also tested for PSTVd infection, revealing a high rate of PSTVd contamination in these potato propagation materials. Furthermore, comparison of the full-length sequences of 71 different Chinese PSTVd isolates revealed a total of 74 predominant PSTVd variants, which represented 42 different sequence variants of PSTVd. Comparative sequence analysis revealed 30 novel PSTVd sequence variants specific to China. Comprehensive phylogenetic analysis uncovered a close relationship between the Chinese PSTVd sequence variants and those isolated from Russia. It is worth noting that three intermediate strains and six mild strains were identified among these variants. These results have important implications for explaining the ineffective control of PSTVd in China and thus could serve as a basic reference for designing more effective measures to eliminate PSTVd from China in the future.
Reference
|
Related Articles
|
Metrics
Select
Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.×Vitis labrusca L.)
YU Xiu-ming, LI Jie-fa, ZHU Li-na, WANG Bo, WANG Lei, BAI Yang, ZHANG Cai-xi, XU Wen-ping, WANG Shi-ping
2015, 14 (
1
): 67-79. DOI:
10.1016/S2095-3119(14)60876-5
Abstract
(
1805
)
PDF in ScienceDirect
To decipher the relationship between the inhibited shoot growth and expression pattern of key enzymes in nitrogen metabolism under root restriction, the effects of root restriction on diurnal variation of expression of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS1-1, GS1-2, GS2) and glutamate synthase (Fd-GOGAT, NADH-GOGAT) genes and nitrogen levels were evaluated in two-year-old Jumeigui grapevines (Vitis vinifera L.×Vitis labrusca L.) when significant differences in shoot growth were observed between treatments at expansion stage (22 days after anthesis). Grapevines were planted in root-restricting pits as root restriction and in an unrestricted field as the control. Results showed that root restriction significantly reduced shoot growth, but promoted the growth of white roots and fibrous brown roots and improved the fruit quality. (NO3 –+NO2 –)-N concentration in all plant parts, NH4 +-N concentration in white roots and total N concentration in leaves and brown roots were significantly reduced under root restriction. Gene expression analysis revealed that mRNA levels of genes related to the GS1/NADH-GOGAT pathway were lower in root-restricted than in control petioles, whereas genes involved in the GS2/Fd-GOGAT pathway were up-regulated under root restriction. Root restriction also resulted in downregulation of genes involved in nitrogen metabolism in leaves, especially at 10:00, while transcript levels of all these genes were enhanced in root-restricted white and brown roots at most time points. This organ-dependent response contributed to the alteration in NO3 – reduction and NH4 + assimilation under root restriction, leading to less NO3 – transported from roots and then assimilated in root-restricted leaves. Therefore, this study implied that shoot growth inhibition in grapevines under root restriction is closely associated with down-regulation of gene expression in nitrogen metabolism in leaves.
Reference
|
Related Articles
|
Metrics
Select
Responses of Ryegrass (Lolium perenne L.) Grown in Mudflats to Sewage Sludge Amendment
BAI Yan-chao, GU Chuan-hui, TAO Tian-yun, ZHU Xiao-wen, XU Yi-ran, SHAN Yu-hua , FENG Ke
2014, 13 (
2
): 426-433. DOI:
10.1016/S2095-3119(13)60564-X
Abstract
(
1862
)
PDF in ScienceDirect
Sewage sludge amendment (SSA) is an alternative waste disposal technique and a potential way to increase fertility of mudflats for crop growth. The present study aimed to assess the suitability of SSA by assessing the nitrogen (N) and phosphorous (P) uptakes, heavy metal accumulation, growth, biomass, and yield response of ryegrass (Lolium perenne L.) at 0, 30, 75, 150, and 300 t ha-1 SSA rates at various growth stages. The results showed that the highest biomass of ryegrass at seedling and vegetative stages were at 300 and 150 t ha-1 SSA rate, respectively. The increments of ryegrass yield at reproductive stage at 30, 75, 150, and 300 t ha-1 SSA rates were 98.0, 122.6, 88.1, and 61.2%, compared to unamended soil. N and P concentrations in ryegrass increased with increasing SSA rates at all stages except N and P in roots dropped significantly at 300 t ha-1 rate at vegetative stage. The metal concentration for Mn, Cu, Zn, Ni, Cd, Cr, and Pb in shoot of ryegrass at 300 t ha-1 SSA rate increased by 0.63-, 2.34-, 15.02-, 0.97-, 10.00-, 0.01- and 1.13-fold, respectively, compared to unamended soil. However, heavy metal concentrations in shoot of ryegrass were lower than the standard for forage products in China. The study suggested that sewage sludge amendment in mudflat soils might be feasible. However, the impacts of sludge application on edible crop plants and soil environment need further investigations.
Reference
|
Related Articles
|
Metrics