期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 一种新的可分性指数及其在中国南方Sentinel-2冬油菜制图的应用
TAO Jian-bin, ZHANG Xin-yue, WU Qi-fan, WANG Yun
Journal of Integrative Agriculture    2023, 22 (6): 1645-1657.   DOI: 10.1016/j.jia.2022.10.008
摘要230)      PDF    收藏
利用遥感数据进行大范围作物制图对于农业生产、粮食安全和人类可持续发展具有重要意义。冬油菜是中国重要的油料作物,主要分布在长江流域。传统的冬油菜制图方法主要利用冬油菜关键物候期的光谱特征,获取遥感数据的时间窗口有限,因而不能满足大范围应用的需要。本研究提出了一种新的基于物候特征的冬油菜指数(PWRI)来进行长江中游地区的冬油菜制图。PWRI扩大了冬油菜和冬小麦的区分时间窗口,在冬油菜整个花期具有良好的分离性。PWRI还扩大了两种冬季作物的可分离性。采用基于PWRI的方法,利用时间序列合成Sentinel-2数据,在Google Earth Engine平台上实现了对长江中游地区冬季油菜的制图。该方法取得了良好的结果,总体精度和kappa系数分别超过92%和0.85。基于PWRI的方法为大范围高空间分辨率冬油菜制图提供了一种新的解决方案。
参考文献 | 相关文章 | 多维度评价
2. 紫云英-稻秸联合利用对我国南方稻田土壤团聚体和土壤有机碳稳定性的影响
ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong
Journal of Integrative Agriculture    2023, 22 (5): 1529-1545.   DOI: 10.1016/j.jia.2022.09.025
摘要260)      PDF    收藏
紫云英-稻秸联合利用作为一种高效的耕作模式在我国南方稻区已有广泛应用,然而其对稻田土壤团聚体和土壤有机碳稳定性的影响尚缺乏研究。本文基于田间定位试验,研究了紫云英、稻秸及其联合利用对土壤团聚体分布和有机碳组分的影响。田间定位试验设6个处理,分别为冬闲稻秸不还田(Crtl)、冬闲稻秸半量还田(1/2RS)、冬闲稻秸全量还田(RS)、冬种紫云英稻秸不还田(GM)、冬种紫云英稻秸半量还田(GM1/2RS)、冬种紫云英稻秸全量还田(GMRS)。结果表明,GMRS相比RS处理,土壤细大团聚体(0.25-2 mm)含量和团聚体平均质量直径(MWD)分别增加18.9%3.41%,粉粘粒(<0.053 mm)含量降低14.4%GMRS相比GMRS,提高了微团聚体(0.053-0.25 mm)和粉粘粒中的SOC含量。GMRS处理相比RS显著增加了各粒径团聚体和全土中的轻组有机碳(fLOC)含量及其在碳组分中的占比,降低了细大团聚体、微团聚体和全土中矿质结合态有机碳(MOC)的含量及其在碳组分中的占比。GMRS相比GM提高了颗粒态有机碳(iPOC)在有机碳组分中的占比。GMRS对细大团聚体中的iPOC有强烈的正影响,说明联合利用能够促进fLOC转移到iPOC综上紫云英-稻秸联合利用能够通过提高fLOC含量培育土壤有机碳库,并促进有机碳转化为iPOC以物理保护的形式固存而提高其稳定性


参考文献 | 相关文章 | 多维度评价
3. JIA-2022-0012 直立穂型基因与环境对水稻产量及其构成因素的互作效应
WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko
Journal of Integrative Agriculture    2023, 22 (3): 716-726.   DOI: 10.1016/j.jia.2022.08.013
摘要241)      PDF    收藏
DEP1基因调控的直立穗型基因(EP基因)已被广泛应用到中国粳稻的高产育种中,而DEP1基因在群体水平上的育种价值还有待深入研究。本研究通过构建以秋田小町(AKI)及辽粳5号(LG 5)为遗传背景的DEP1近等基因系在不同年份及不同生态环境下,分析DEP1基因与环境条件对水稻产量及其构成因素的互作效应。两对近等基因系材料分别于20162017年采用随机区组方法种植在沈阳(中国)及京都(日本),2018年种植在京都(日本)。结果表明,AKI-EPAKI-NEP的平均产量分别为6.67 t ha−1 6.13 t ha−1 LG 5-EPLG 5-NEP的平均产量分别为6.66 t ha−1 6.58 t ha−1 EP基因的效应可以增加穗数(PN)及每平方米穗粒数(GNPM)从而增加收获指数(HI),但降低了籽粒的千粒重(KGW)。EP基因型与NEP基因型在产量的比值及在生物产量上的比值与抽穗前15天到抽穗后25天这40天内日平均辐射呈显著正相关,说明等位基因EP基因的有效性取决于太阳辐射的高低。本试验研究表明,等位基因EP型对水稻的形成具有一定的正向作用,但需要在较高的太阳辐射条件下才能对水稻产生形成积极影响。
参考文献 | 相关文章 | 多维度评价
4. 美洲南瓜雌花早花期QTL分析-园艺作物种质资源和分子育种
QU Shu-ping, YANG Dan, YU Hai-yang, CHEN Fang-yuan, WANG Ke-xin, DING Wen-qi, XU Wen-long, WANG Yun-li
Journal of Integrative Agriculture    2023, 22 (11): 3321-3330.   DOI: 10.1016/j.jia.2022.09.009
摘要188)      PDF    收藏

早花能促进美洲南瓜早熟和高产,并能拮抗生物和非生物胁迫,是美洲南瓜重要的农艺性状。在本研究中,美洲南瓜自交系‘19’的第一雌花开花天数明显少于自交系‘113’,表现为稳定的早花性状。遗传分析表明,第一雌花开花天数是一个可遗传的数量性状,受多基因控制。采用QTL测序结合连锁分析的方法,在第41120号染色体上鉴定出3个用于第一雌花开花天数的QTL。为了验证这一结果,利用不同环境条件下生长的F2群体,开发InDel标记对第一雌花开花天数进行QTL定位分析。利用R/qtl软件的复合区间作图方法,在所有环境条件下均鉴定出1个主位点,位于20号染色体117 kb的候选区域。通过基因注释、基因序列比对和qRT-PCR分析,发现编码环指蛋白的Cp4.1LG20g08050基因可能是一个对美洲南瓜早花起相反调控作用的候选基因。总之,本研究结果为更好地认识美洲南瓜早花性状,为美洲南瓜的早花育种策略奠定了基础。

参考文献 | 相关文章 | 多维度评价
5. Overexpression of the MADS-box gene SlMBP21 alters leaf morphology and affects reproductive development in tomato
WANG Yun-shu, GUO Peng-yu, ZHANG Jian-ling, XIE Qiao-li, SHEN Hui, HU Zong-li, CHEN Guo-ping
Journal of Integrative Agriculture    2021, 20 (12): 3170-3185.   DOI: 10.1016/S2095-3119(21)63638-9
摘要230)      PDF    收藏

果实产量是番茄最重要的园艺特性。根据前人的报道,SEPMBATA型MADS-box基因SlMBP21具有控制番茄花梗离区形成以及调控萼片大小的功能。然而,我们构建过表达的SlMBP21转基因番茄植株,发现这些转基因植株显示出卷曲的叶子,扭曲和开放的雄蕊,产量降低,并产生了小而轻的种子。我们对功能获得型表型和基因表达水平的研究表明SlMBP21基因在调控叶片形态、花和花序结构、种子大小以及果实产量方面起着重要作用。番茄中SlMBP21的过表达导致叶片卷曲,叶片少,这是由于其对关键的叶片极性相关基因的调控导致上、下轴细胞生长不平衡所致。花和花序结构的缺陷导致果实减少。此外,我们发现了SlMBP21通过抑制参与确定番茄种子发育相关基因的表达并与其他一些MADS-box蛋白(S1AGL11,TAGL1和SlMBP3)相互作用来控制种子大小。因此,这些结果表明SlMBP21的过表达对植物生长和发育,特别是对番茄的果实产量造成多重损害。


参考文献 | 相关文章 | 多维度评价
6. Metabolic responses to combined water deficit and salt stress in maize primary roots
LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu
Journal of Integrative Agriculture    2021, 20 (1): 109-119.   DOI: 10.1016/S2095-3119(20)63242-7
摘要143)      PDF    收藏

土壤干旱和盐胁迫是植物生长和农业生产力的主要限制因素。主胚根是感知干旱和盐分胁迫信号的第一个器官。研究发现,与对照植株相比,遭受干旱、高盐和复合胁迫的玉米植株的主胚根长度明显变短。利用气相色谱-质谱联用技术测定了玉米主胚根在干旱、高盐和复合胁迫下代谢产物的变化。本研究共测定86种代谢产物,包括29种氨基酸和胺,21种有机酸,4种脂肪酸,6种磷酸,10种多糖,10种多元醇和6种其他代谢物。其中,53个代谢物在不同胁迫下均有显著变化,且大部分代谢物含量呈下降趋势。共计4种和18种代谢物分别对三种处理均有显著的上调和下调。糖和多元醇等可溶性物质的含量增加以维持渗透平衡。TCA循环中柠檬酸、酮戊二酸、延胡索酸、苹果酸的水平显著降低,莽草酸途径中奎宁酸、莽草酸等代谢物含量显著降低。本研究揭示了主胚根在干旱和盐胁迫复合作用下的复杂代谢反应,拓展了我们对玉米根系对非生物耐受性反应机制的理解。


参考文献 | 相关文章 | 多维度评价
7. Effects of subsoiling depth, period interval and combined tillage practice on soil properties and yield in the Huang-Huai-Hai Plain, China
WANG Yun-xia, CHEN Shu-ping, ZHANG Dong-xing, YANG Li, CUI Tao, JING Hui-rong, LI Yu-huan
Journal of Integrative Agriculture    2020, 19 (6): 1596-1608.   DOI: 10.1016/S2095-3119(19)62681-X
摘要160)      PDF    收藏
Compaction layers are widely distributed in the Huang-Huai-Hai Plain, China, which restrict root growth and reduce yields.  The adoption of subsoiling has been recommended to disrupt compacted soil layers and create a reasonable soil structure for crop development.  In this paper, the effects of subsoiling depth (30, 35 and 40 cm), period interval (2 or 3 years) and combined pre-sowing tillage practice (rotary cultivation or ploughing) on soil condition improvement was studied on a tidal soil in the Huang-Huai-Hai Plain.  Seven tillage patterns were designed by combining different subsoiling depths, period intervals and pre-sowing.  The evaluation indicators for soil condition improvement were as follows: thickness of the plough layer and hard pan, soil bulk density, cone index, soil three-phase R values, alkali nitrogen content, crop yield, and economic benefits.  The results showed that subsoiling can significantly improve the soil structure and physical properties.  In all subsoiling treatments, the depth of 35 or 40 cm at a 2-year interval was the most significant.  The thickness of the plough layer increased from 13.67 cm before the test to 21.54–23.45 cm in 2018.  The thickness of the hard pan decreased from 17.68 cm before the test to 12.09–12.76 cm in 2018, a decrease of about 40.07%.  However, the subsoiling combined pre-sowing tillage practice, that is, rotary cultivation or ploughing, was not significant for soil structure and physical properties.  For all subsoiling treatments, the soil bulk density, cone index and soil three-phase R values of the 15–25 cm soil layer were significantly lower compared to single rotary cultivation.  Subsoiling was observed to increase the soil alkaline nitrogen and water contents.  The tillage patterns that had subsoiling at the depth of 35–40 cm at a 2-year interval combined with rotary cultivation had the highest alkali nitrogen and water contents, which increased by 31.08–34.23% compared with that of the single rotary cultivation.  Subsoiling can significantly increase the yield both of wheat and corn, as well as the economic benefits.  The treatment of subsoiling at the depth of 35 cm at an interval of 2 years combined with rotary cultivation had the highest annual yield and economic benefits.  For this treatment, the annual yield and economic benefits increased by 14.55 and 62.87% in 2018, respectively.  In conclusion, the tillage patterns that involved subsoiling at a depth of 35 cm at a 2-year interval along with rotary cultivation are suitable for the Huang-Huai-Hai Plain.
 
参考文献 | 相关文章 | 多维度评价
8. Exploiting push-pull strategy to combat the tea green leafhopper based on volatiles of Lavandula angustifolia and Flemingia macrophylla
HAN Shan-jie, WANG Meng-xin, WANG Yan-su, WANG Yun-gang, CUI Lin, HAN Bao-yu
Journal of Integrative Agriculture    2020, 19 (1): 193-203.   DOI: 10.1016/S2095-3119(19)62778-4
摘要181)      PDF    收藏
Thirteen volatile compounds were identified from Flemingia macrophylla plants.  Eight major components significantly attracted the tea green leafhoppers, Empoasca flavescens F.  Based on their relative abundances, following synthetic blends were made for field experiments: 1) eight-component-attractant blend included Z-3-hexen-1-ol, Z-3-hexenyl acetate, Z-ocimene, MeSA, Z-3-hexenyl butyrate, dodecane, hexadecane and nonanal at 10, 10, 1, 11, 2, 6, 2 and 4 mg mL–1 in n-hexane, respectively; 2) four-component-attractant blend #1 contained hexadecane, Z-3-hexenyl acetate, Z-3-hexen-1-ol and nonanal at 2, 10, 10 and 4 mg mL–1 in n-hexane, respectively; 3) four-component-attractant blend #2 contained hexadecane, Z-3-hexenyl acetate, Z-3-hexen-1-ol and MeSA at 2, 10, 10 and 11 mg mL–1 in n-hexane, respectively.  Thymol and 1-methoxy-4-methyl-2-(1-methylethyl)-benzene, identified from Lavandula angustifolia aeration samples, significantly repelled the leafhopper as strong repellents when tested alone or in combination at 10 mg mL–1.  For field bioassays, each attractant lure was attached to a bud green sticky board hung from a bamboo stick at above tea plant level for catching the leafhoppers, whereas the repellent dispenser was tied to a tea branch inside tea clump for pushing the leafhoppers away from tea clumps.  The results showed that the eight-component-attractant blend caught similar numbers of the leafhopper as did the four-component-attractant blend #1 at about 53–79 leafhoppers/trap/day, which were significantly higher than those on the hexane-control bud green sticky boards.  Average leafhopper catches from un-baited sticky boards were about 51–73 leafhoppers/trap/day when pushed by the repellents placed inside tea plants, with the two-component-repellent blend being more effective than their single components.  When the two-component-repellent blend was further tested with the three attractant blends in a push-pull fashion, average trap catches ranged from 62 to 92 leafhoppers/trap/day.  Control efficacy on the leafhoppers within the push-pull zones increased progressively from day 1 (43%) to day 5 (73%).  This push-pull approach might have a great potential as a green control strategy for combating the tea green leafhoppers. 
参考文献 | 相关文章 | 多维度评价
9. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system
CHEN Hui, HOU Hui-jing, WANG Xiao-yun, ZHU Yan, Qaisar Saddique, WANG Yun-fei, CAI Huan-jie
Journal of Integrative Agriculture    2018, 17 (2): 449-460.   DOI: 10.1016/S2095-3119(17)61761-1
摘要818)      PDF    收藏
Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse.  The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two consecutive greenhouse tomato rotation cycles in Northwest China were studied via the static closed chamber and gas chromatography technique.  Four treatments, aerated deficit irrigation (AI1), non-aerated deficit irrigation (CK1), aerated full irrigation (AI2) and non-aerated full irrigation (CK2), were performed.  The results showed that the tomato yield under aeration of each irrigation regime increased by 18.8% on average compared to non-aeration, and the difference was significant under full irrigation (P<0.05).  Full irrigation significantly increased the tomato yield by 23.9% on average in comparison to deficit irrigation.  Moreover, aeration increased the cumulative CO2 emissions compared to non-aeration, and treatment effects were significant in the autumn-winter season (P<0.05).  A slight increase of CO2 emissions in the two seasons was observed under full irrigation (P>0.05).  There was no significant difference between aeration and non-aeration in soil N2O emissions in the spring-summer season, whereas aeration enhanced N2O emissions significantly in the autumn-winter season.  Furthermore, full irrigation over the two seasons greatly increased soil N2O emissions compared to the deficit irrigation treatment (P<0.05).  Correlation analysis indicated that soil temperature was the primary factor influencing CO2 fluxes.  Soil temperature, soil moisture and NO3 were the primary factors influencing N2O fluxes.  Irrigation coupled with particular soil aeration practices may allow for a balance between crop production yield and greenhouse gas mitigation in greenhouse vegetable fields.
参考文献 | 相关文章 | 多维度评价
10. Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance
WANG Xiao-shan, REN Hai-long, WEI Zen-wu, WANG Yun-wen, REN Wei-bo
Journal of Integrative Agriculture    2017, 16 (08): 1800-1807.   DOI: 10.1016/S2095-3119(16)61522-8
摘要604)      PDF    收藏
   The effects of neutral salt and alkali on the ion distribution were investigated in two alfalfa (Medicago sativa L.) cultivars, including Zhongmu 1, a high salt-tolerant cultivar, and Algonquin, a low salt-tolerant cultivar. The alkali stress expressed more serious growth inhibition than the neutral salt stress at the same Na+ concentration. Compared with Algonquin, Zhongmu 1 did not exhibit a higher alkali tolerance under the Na2CO3-NaHCO3 treatment with the low Na+ concentration (50 mmol L–1). The alkali increased the accumulation of Na+, Ca2+, and Mg2+ in the root and changed the Ca2+ and Mg2+ balance in the entire alfalfa plant. The salt and alkali stresses decreased the K+ and Fe3+ contents of the roots and leaves, the root Mn2+ content, and the shoot Zn2+ content, but they increased the Fe3+ accumulation of the shoots, the shoot and leaf Cu2+ contents, and the leaf Zn2+ content in both alfalfa cultivars. Based on the results obtained under the conditions of this experiment, we found that the salt and alkali stresses reduced the plant growth in both alfalfa cultivars, while the alkali caused a stronger stress than the neutral salt in alfalfa. Thus, we conclude that under hydroponic conditions, the deleterious effects of the alkali on plants are due to the distribution change of some trophic ion balance in the roots, shoots, and leaves of the plants by causing of Na+, CO32–, and/or HCO3 stresses.
参考文献 | 相关文章 | 多维度评价
11. Effects of CO2 enrichment and spikelet removal on rice quality under open-air field conditions
JING Li-quan, WU Yan-zhen, ZHUANG Shi-teng, WANG Yun-xia, ZHU Jian-guo, WANG Yu-long, YANG Lian-xin
Journal of Integrative Agriculture    2016, 15 (9): 2012-2022.   DOI: 10.1016/S2095-3119(15)61245-X
摘要1368)      PDF    收藏
    The increase of atmospheric carbon dioxide (CO2) concentration adversely affect several quality traits of rice grains, but the biochemical mechanism remains unclear. The objectives of this study were to determine how changes in the source-sink relationship affected rice quality. Source-sink manipulation was achieved by free-air CO2 enrichment from tillering to maturity and partial removal of spikelet at anthesis using a japonica rice cultivar Wuyunjing 23. Enrichment with CO2 decreased the head rice percentage and protein concentration of milled rice, but increased the grain chalkiness. In contrast, spikelet removal resulted in a dramatic increase in the head rice percentage and protein concentration, and much less grain chalkiness. Neither CO2 enrichment nor spikelet removal affected the starch content, but the distribution of starch granule size showed distinct treatment effects. On average, spikelet removal decreased the percentage of starch granules of diameter >10 and 5–10 μm by 23.6 and 5.6%, respectively, and increased those with a diameter of 2–5 and <2 μm by 4.6 and 3.3%, respectively. In contrast, CO2 elevation showed an opposite response: increasing the proportion of large starch granules (>5 μm) and decreasing that of <5 μm. The starch pasting properties were affected by spikelet removal much more than by CO2 elevation. These results indicated that the protein concentration and starch granule size played a role in chalkiness formation under these experimental conditions.
参考文献 | 相关文章 | 多维度评价
12. Intercropping of rice varieties increases the efficiency of blast control through reduced disease occurrence and variability
HAN Guang-yu, LANG Jie, SUN Yan, WANG Yun-yue, ZHU You-yong, LU Bao-rong
Journal of Integrative Agriculture    2016, 15 (4): 795-802.   DOI: 10.1016/S2095-3119(15)61055-3
摘要1683)      PDF    收藏
Creating a crop-heterogeneous system by intraspecific mixtures of different rice varieties can substantially reduce blast diseases. Such variety mixtures provide an ecological approach for effective disease control, maintaining high yields with the minimum fungicide applications. Whether such an approach is universally applicable for random rice variety combinations and what is the variation pattern of the diseases under intercropping still remains unclear. We conducted two-year large-scale field experiments involving 47 rice varieties/lines and 98 variety-combinations to compare the occurrence of rice blast in monoculture and intercropping plots at multiple sites. In the experiments, the plant height of the selected traditional varieties was about 30 cm taller, and their life cycle was 10 days longer, than that of the improved rice varieties. The monoculture included either traditional or modern rice varieties grown in separate plots. The intercropping included both traditional and modern rice varieties planted together in the same plots. Results from the field experiments under natural disease conditions demonstrated significant reduction for rice blast disease in intercropping plots, compared with that in monoculture plots. For traditional varieties, the average blast incidence reduced from ~26% in monoculture to ~10% in intercropping, and the disease severity reduced from ~17 in monoculture to ~5 in intercropping. For modern varieties, the average blast incidence reduced from ~19% in monoculture to ~10% in intercropping, and the severity from ~10 in monoculture to ~4 in intercropping. Traditional rice varieties (~72%) had a much greater increase in the efficiency of disease control than modern varieties (~60%). In addition, substantially lower values of variance in the blast incidence and severity was detected among the variety combinations in intercropping plots than in monoculture plots. Based on these results, we conclude that the intercropping or mixture of rice varieties greatly reduces the occurrence and variation of rice blast disease in particular variety combinations, which makes the intercropping system more stable and consistent for disease suppression on a large scale of rice cultivation.
参考文献 | 相关文章 | 多维度评价
13. Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain
WANG Yun-qi, XI Wen-xing, WANG Zhi-min, WANG Bin, XU Xue-xin, HAN Mei-kun, ZHOU Shun-li, ZHANG Ying-hua
Journal of Integrative Agriculture    2016, 15 (10): 2247-2256.   DOI: 10.1016/S2095-3119(16)61408-9
摘要1673)      收藏
    To understand the contribution of ear photosynthesis to grain yield and its response to water supply in the improvement of winter wheat, 15 cultivars released from 1980 to 2012 in North China Plain (NCP) were planted under rainfed and irrigated conditions from 2011 to 2013, and the ear photosynthesis was tested by ear shading. During the past 30 years, grain yield significantly increased, the flag leaf area slightly increased under irrigated condition but decreased significantly under rainfed condition, the ratio of grain weight:leaf area significantly increased, and the contribution of ear photosynthesis to grain yield changed from 33.6 to 64.5% and from 32.2 to 57.2% under rainfed and irrigated conditions, respectively. Grain yield, yield components, and ratio of grain weight:leaf area were positively related with contribution of ear photosynthesis. The increase in grain yield in winter wheat was related with improvement in ear photosynthesis contribution in NCP, especially under rainfed condition.
参考文献 | 相关文章 | 多维度评价
14. Empirical study on optimal reinsurance for crop insurance in China from an insurer’s perspective
ZHOU Xian-hua, WANG Yun-bo, ZHANG Hua-dong, WANG Ke
Journal of Integrative Agriculture    2015, 14 (10): 2121-2133.   DOI: 10.1016/S2095-3119(14)60998-9
摘要1360)      PDF    收藏
This study investigates the optimal reinsurance for crop insurance in China in an insurer’s perspective using the data from Inner Mongolia, Jilin, and Liaoning, China. On the basis of the loss ratio distributions modeled by AnHua Crop Risk Evaluation System, we use the empirical model developed by Tan and Weng (2014) to study the optimal reinsurance design for crop insurance in China. We find that, when the primary insurer’s loss function, the principle of the reinsurance premium calculation, and the risk measure are given, the level of risk tolerance of the primary insurer, the safety loading coefficient of the reinsurer, and the constraint on reinsurance premium budget affect the optimal reinsurance design. When a strict constraint on reinsurance premium budget is implemented, which often occurs in reality, the limited stop loss reinsurance is optimal, consistent with the common practice in reality. This study provides suggestions for decision making regarding the crop reinsurance in China. It also provides empirical evidence for the literature on optimal reinsurance from the insurance market of China. This evidence undoubtedly has an important practical significance for the development of China’s crop insurance.
参考文献 | 相关文章 | 多维度评价
15. Responses of Plant Community and Soil Properties to Inter-Annual Precipitation Variability and Grazing Durations in a Desert Steppe in Inner Mongolia
WANG Zhen, YUN Xiang-jun, WEI Zhi-jun, Michael P Schellenberg, WANG Yun-feng, YANGXia , HOU Xiang-yang
Journal of Integrative Agriculture    2014, 13 (6): 1171-1182.   DOI: 10.1016/S2095-3119(13)60660-7
摘要1791)      PDF    收藏
Grazing can dramatically affect arid grassland communities that are very vulnerable to environmental changes due to its relatively short and sparse ground coverage, low biomass, sandy soil and inter-annual precipitation found in the desert steppe. The study investigates the effects of different grazing durations on vegetation and soil properties of a desert steppe community. The experiment was conducted in Xisu Banner in Inner Mongolia with five treatments: CG (continuous grazing), 40UG (40 d ungrazed), 50UG (50 d ungrazed), 60UG (60 d ungrazed) and UG (ungrazed). The biomass of both shrub and annual-biennial plant communities were significantly decreased by CG. Continuous grazing and 40UG significantly reduced the ANPP (aboveground net primary productivity) by the end of the three year study. 60UG treatment increased soil organic carbon (OC), total nitrogen concentration (TN) and total phosphorus concentration (TP) concentrations and 50UG increased the TN and total phosphorus concentration (TK) concentrations, whereas CG, 40UG and 50UG decreased soil OC, TP and available phosphorus concentration (AP) concentrations. The perennial plant species of the desert steppe were generally tolerant for grazing. The annual-biennial plant species had large variability in ANPP because of the inter-annual precipitation. Our results highlight that inter-annual precipitation variations could strongly modify the community responses to grazing in arid ecosystems.
参考文献 | 相关文章 | 多维度评价
16. GmPHR1, a Novel Homolog of the AtPHR1 Transcription Factor, Plays a Role in Plant Tolerance to Phosphate Starvation
LI Xi-huan, WANG Yun-jie, WU Bing, KONG You-bin, LI Wen-long, CHANG Wen-suo , ZHANG Cai-ying
Journal of Integrative Agriculture    2014, 13 (12): 2584-2593.   DOI: 10.1016/S2095-3119(14)60775-9
摘要1900)      PDF    收藏
GmPHR1 from soybean (Glycine max) was isolated and characterized. This novel homolog of the AtPHR1 transcription factor confers tolerance to inorganic phosphate (Pi)-starvation. The gene is 2751 bp long, with an 819-bp open reading frame and five introns. Analysis of transcription activity in yeast revealed that the full-length GmPHR1 and its C-terminal activate the reporter genes for His, Ade and Ura, suggesting that the C-terminal peptide functions as a transcriptional activator. Quantitative real-time PCR indicated that patterns of GmPHR1 expression differed. For example, under low-Pi stress, this gene was quickly induced in the tolerant JD11 after 0.5 h, with expression then decreasing slowly before peaking at 12-24 h. By contrast, induction in the sensitive Niumaohuang (NMH) was slow, peaking at 6 h before decreasing quickly at 9 h. GmPHR1 showed sub-cellular localization in the nuclei of onion epidermal cells and Arabidopsis roots. Growth parameters in wild-type (WT) Arabidopsis plants as well as in overexpression (OE) transgenic lines were examined. Under low-Pi conditions, values for shoot, root and whole-plant dry weights, root to shoot ratios, and lengths of primary roots were significantly greater in OE lines than in the WT. These data demonstrate that GmPHR1 has an important role in conferring tolerance to phosphate starvation.
参考文献 | 相关文章 | 多维度评价
17. Genetic Analysis of Cold Tolerance at Seedling Stage and Heat Tolerance atAnthesis in Rice (Oryza sativa L.)
CHENG Li-rui, Veronica Uzokwe, WANG Yun, ZHU Linghua
Journal of Integrative Agriculture    2012, 12 (3): 359-367.   DOI: 10.1016/S1671-2927(00)8553
摘要1980)      PDF    收藏
A set of 240 introgression lines derived from the advanced backcross population of a cross between a japonica cultivar,Xiushui 09, and an indica breeding line, IR2061, was developed to dissect QTLs affecting cold tolerance (CT) at seedlingstage and heat tolerance (HT) at anthesis. Survival rate of seedlings (SRS) and spikelet fertility (SF), the index traits of CTand HT, showed significant differences between the two parents under stresses. A total of four QTLs (qSRS1, qSRS7,qSRS11a and qSRS11b) for CT were identified on chromosomes 1, 7, 11, and the Xiushui 09 alleles increased SRS at all lociexcept qSRS7. Four QTLs for SF were identified on chromosomes 4, 5, 6, and 11. These QTLs could be classified into twomajor types based on their behaviors under normal and stress conditions. The first was QTL expressed only under normalcondition; and the second QTL was apparently stress induced and only expressed under stress. Among them, two QTLs(qSF4 and qSF6) which reduced the trait difference between heat stress and normal conditions must have contributed toHT because of their obvious contribution to trait stability, and the IR2061 allele at the qSF6 and the Xiushui 09 allele at the qSF4improved HT, respectively. No similar QTL was found between CT at seedling stage and HT at anthesis. Therefore, it ispossible to breed a new variety with CT and HT by pyramiding the favorable CT- and HT-improved alleles at above locifrom Xiushui 09 and IR2061, respectively, through marker-assisted selection (MAS).
参考文献 | 相关文章 | 多维度评价