[1] |
SHAO Y F, HU Z Q, YU Y H, MOU R X, ZHU Z W, BETA T. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry, 2018, 239: 733-741.
doi: S0308-8146(17)31145-7
pmid: 28873629
|
[2] |
WU N N, LI R, LI Z J, TAN B. Effect of germination in the form of paddy rice and brown rice on their phytic acid, GABA, γ-oryzanol, phenolics, flavonoids and antioxidant capacity. Food Research International, 2022, 159: 111603.
|
[3] |
KHAN J, KHAN M, MA Y L, MENG Y T, MUSHTAQ A, SHEN Q, XUE Y. Overview of the composition of whole grains’ phenolic acids and dietary fibre and their effect on chronic non-communicable diseases. International Journal of Environmental Research and Public Health, 2022, 19(5): 3042.
|
[4] |
TOUTOUNJI M R, FARAHNAKY A, SANTHAKUMAR A B, OLI P, BUTARDO V M, BLANCHARD C L. Intrinsic and extrinsic factors affecting rice starch digestibility. Trends in Food Science & Technology, 2019, 88: 10-22.
|
[5] |
周鑫. 稻米淀粉消化特性等功能性状的遗传与结构基础研究[D]. 杭州: 浙江大学, 2020.
|
|
ZHOU X. Genetic and molecular structural basis for resistant starch and other functional properties in rice (Oryza sativa L.)[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
|
[6] |
任欣, 张一, 方圆, 彭洁, 张敏. 影响淀粉消化的内外因素. 中国食品学报, 2021, 21(12): 283-292.
|
|
REN X, ZHANG Y, FANG Y, PENG J, ZHANG M. Internal and external factor affecting starch digestibility: A review. Journal of Chinese Institute of Food Science and Technology, 2021, 21(12): 283-292. (in Chinese)
|
[7] |
YE J P, HU X T, LUO S J, MCCLEMENTS D J, LIANG L, LIU C M. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International, 2018, 106: 404-409.
doi: S0963-9969(18)30008-5
pmid: 29579941
|
[8] |
OU S J L, FU A S, LIU M H. Impact of starch-rich food matrices on black rice anthocyanin accessibility and carbohydrate digestibility. Foods, 2023, 12(4): 880.
|
[9] |
TAMURA M, TSUJII H, SAITO T, SASAHARA Y. Relationship between starch digestibility and physicochemical properties of aged rice grain. LWT- Food Science and Technology, 2021, 150: 111887.
|
[10] |
AHN H, LEE M R, SHIN H, CHUNG H A, PARK Y K. Postprandial glucose response after consuming low-carbohydrate, low-calorie rice cooked in a carbohydrate-reducing rice cooker. Foods, 2022, 11(7): 1050.
|
[11] |
FU T T, CAO H W, ZHANG Y, GUAN X. Effect of milling on in vitro Digestion-Induced release and bioaccessibility of active compounds in rice. Food Chemistry, 2024, 437: 137936.
|
[12] |
MENDOZA-SARMIENTO D, MISTADES E V, HILL A M. Effect of pigmented rice consumption on cardiometabolic risk factors: A systematic review of randomized controlled trials. Current Nutrition Reports, 2023, 12(4): 797-812.
|
[13] |
PINTO D, LÓPEZ-YERENA A, LAMUELA-RAVENTÓS R, VALLVERDÚ-QUERALT A, DELERUE-MATOS C, RODRIGUES F. Predicting the effects of in-vitro digestion in the bioactivity and bioaccessibility of antioxidant compounds extracted from chestnut shells by supercritical fluid extraction-A metabolomic approach. Food Chemistry, 2024, 435: 137581.
|
[14] |
KHAN R M M, CHUA Z J Y, TAN J C, YANG Y Y, LIAO Z H, ZHAO Y. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina, 2019, 55(9): 546.
|
[15] |
GONZÁLEZ-ABUÍN N, MARTÍNEZ-MICAELO N, BLAY M, PUJADAS G, GARCIA-VALLVÉ S, PINENT M, ARDÉVOL A. Grape seed-derived procyanidins decrease dipeptidyl-peptidase 4 activity and expression. Journal of Agricultural and Food Chemistry, 2012, 60(36): 9055-9061.
|
[16] |
LUO M R, GONG W X, ZHANG S Y, XIE L Y, SHI Y T, WU D X, SHU X L. Discrepancies in resistant starch and starch physicochemical properties between rice mutants similar in high amylose content. Frontiers in Plant Science, 2023, 14: 1267281.
|
[17] |
余静, 李水梅, 徐清宇, 郑欣, 邵雅芳, 朱大伟. 稻米蛋白组分提取与测定. 农产品质量与安全, 2023(2): 10-14, 32.
|
|
YU J, LI S M, XU Q Y, ZHENG X, SHAO Y F, ZHU D W. Extraction and determination of rice protein fractions. Quality and Safety of Agro-Products, 2023(2): 10-14, 32. (in Chinese)
|
[18] |
American Association of Cereal Chemists (AACC).Approved Methods of the AACC, 8th ed. Saint Paul, Minnesota, 1984.
|
[19] |
BRODKORB A, EGGER L, ALMINGER M, ALVITO P, ASSUNÇÃO R, BALLANCE S, BOHN T, BOURLIEU-LACANAL C, BOUTROU R, CARRIÈRE F, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14(4): 991-1014.
|
[20] |
ZHANG L, WANG Q, ZHAO Y Y, GE J, HE D J. Phenolic profiles, antioxidant, and hypoglycemic activities of Ribes meyeri fruits. Foods, 2023, 12(12): 2406.
|
[21] |
娄鑫玲, 范志红. 米饭饮食与血糖控制. 中国粮油学报, 2022, 37(12): 269-276.
|
|
LOU X L, FAN Z H. Rice diet and blood glucose control. Journal of the Chinese Cereals and Oils Association, 2022, 37(12): 269-276. (in Chinese)
|
[22] |
YOU H, LIANG C, ZHANG O L, XU H Y, XU L, CHEN Y J, XIANG X C. Variation of resistant starch content in different processing types and their starch granules properties in rice. Carbohydrate Polymers, 2022, 276: 118742.
|
[23] |
REBEIRA S P, PRASANTHA B D R, JAYATILAKE D V, DUNUWILA G R, PIYASIRI C H, HERATH H M K W P, A comparative study of dietary fiber content, in vitro starch digestibility and cooking quality characteristics of pigmented and non-pigmented traditional and improved rice (Oryza sativa L.). Food Research International, 2022, 157: 111389.
|
[24] |
FAN J X, GUO X N, ZHU K X. Insight into the dynamic molecular mechanism underlying the endogenous polyphenols inhibiting the in vitro starch digestion of highland barley noodles. Food Chemistry, 2024, 437: 137870.
|
[25] |
GENG D H, LIN Z X, LIU L, QIN W Y, WANG A X, WANG F Z, TONG L T. Effects of ultrasound-assisted cellulase enzymatic treatment on the textural properties and in vitro starch digestibility of brown rice noodles. LWT, 2021, 146: 111543.
|
[26] |
AMOAKO D B, AWIKA J M. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chemistry, 2019, 285: 326-333.
doi: S0308-8146(19)30262-6
pmid: 30797353
|
[27] |
付永霞, 张凡, 刘振宇, 王晗, 郭尚, 沈群. 熟小米醇溶蛋白改善糖尿病小鼠血糖代谢紊乱的分子机制. 中国食品学报, 2024, 24(7): 147-156.
|
|
FU Y X, ZHANG F, LIU Z Y, WANG H, GUO S, SHEN Q. Molecular mechanism of cooked foxtail millet prolamin in improving glucose metabolism disorder in diabetes mice. Journal of Chinese Institute of Food Science and Technology, 2024, 24(7): 147-156. (in Chinese)
|
[28] |
郭俊杰, 马乔治, 康海岐, 连喜军. 含醇溶蛋白小麦回生抗性直支链淀粉性质分析. 农业工程学报, 2018, 34(4): 293-298.
|
|
GUO J J, MA Q Z, KANG H Q, LIAN X J. Property analysis of resistant wheat amylose and amylopectin with wheat gliadin. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 293-298. (in Chinese)
|
[29] |
肖瑜, 杨新标, 林楠, 郑明珠, 刘景圣. 不同蛋白质对大黄米淀粉老化特性的影响. 食品科学, 2020, 41(16): 45-51.
|
|
XIAO Y, YANG X B, LIN N, ZHENG M Z, LIU J S. Effects of adding different proteins on retrogradation properties of proso millet starch. Food Science, 2020, 41(16): 45-51. (in Chinese)
doi: 10.7506/spkx1002-6630-20190709-121
|
[30] |
TAN X Y, ZHANG S B, MALDE A K, TAN X L, GILBERT R G. Effects of chickpea protein fractions on α-amylase activity in digestion. Food Hydrocolloids, 2022, 133: 108005.
|
[31] |
闫影, 张丽霞, 万常照, 曹黎明, 吴书俊. 稻米淀粉RVA谱特征值及理化指标与食味值的相关性. 植物生理学报, 2016, 52(12): 1884-1890.
|
|
YAN Y, ZHANG L X, WAN C Z, CAO L M, WU S J. Correlation analysis between taste value and RVA profile characteristics as well as physical/chemical indicator in rice. Plant Physiology Journal, 2016, 52(12): 1884-1890. (in Chinese)
|
[32] |
|
|
ZHU D W, ZHENG X, YU J, MOU R X, CHEN M X, SHAO Y F, ZHANG L P. Differences in physicochemical characteristics and eating quality between high taste northern Japonica rice and southern SemiGlutinous Japonica rice varieties in China. Scientia Agricultura Sinica, 2024, 57(3): 469-483. doi: 10.3864/j.issn.0578-1752.2024.03.004. (in Chinese)
|
[33] |
岳红亮, 张梦龙, 程新杰, 刘凯, 宛柏杰, 朱静雯, 唐红生, 孙明法. RVA谱特征值的影响因素及其与稻米食味品质的关系综述. 江苏农业科学, 2023, 51(1): 16-22.
|
|
YUE H L, ZHANG M L, CHENG X J, LIU K, YUAN B J, ZHU J W, TANG H S, SUN M F. Factors influencing characteristic values of RVA spectrum and their relationship with rice taste quality: A review. Jiangsu Agricultural Sciences, 2023, 51(1): 16-22. (in Chinese)
|
[34] |
BAXTER G, BLANCHARD C, ZHAO J. Effects of glutelin and globulin on the physicochemical properties of rice starch and flour. Journal of Cereal Science, 2014, 60(2): 414-420.
|
[35] |
赵一童. 蛋白质含量对水稻稻米品质及其米粉糊化回生特性影响[D]. 南宁: 广西大学, 2022.
|
|
ZHAO Y T. Effects of protein content on rice quality and gelatinization, retrogradation of rice flour[D]. Nanning: Guangxi University, 2022. (in Chinese)
|
[36] |
BAGCHI T B, CHATTOPADHYAY K, SIVASHANKARI M, ROY S, KUMAR A, BISWAS T, PAL S. Effect of different processing technologies on phenolic acids, flavonoids and other antioxidants content in pigmented rice. Journal of Cereal Science, 2021, 100: 103263.
|
[37] |
YU J, ZHENG X, ZHU D W, XU Q Y, XU F F, CHEN M X, MENG L Q, SHAO Y F. Changes of polyphenols and their antioxidant activities in non-pigmented, red and black rice during in vitro digestion. Food Chemistry: X, 2024, 24: 101821.
|
[38] |
LU H, TIAN Y Q, MA R R. Assessment of order of helical structures of retrograded starch by Raman spectroscopy. Food Hydrocolloids, 2023, 134: 108064.
|
[39] |
JIA Y J, CAI S B, MUHOZA B, QI B K, LI Y. Advance in dietary polyphenols as dipeptidyl peptidase-IV inhibitors to alleviate type 2 diabetes mellitus: Aspects from structure-activity relationship and characterization methods. Critical Reviews in Food Science and Nutrition, 2023, 63(19): 3452-3467.
|
[40] |
LIANG J J, YANG S, LIU Y Y, LI H C, HAN M Z, GAO Z P. Characterization and stability assessment of polyphenols bound to Lycium barbarum polysaccharide: Insights from gastrointestinal digestion and colon fermentation. Food Research International, 2024, 179: 114036.
|