[1] |
ZHANG H, REYNOLDS M. Cadmium exposure in living organisms: A short review. Science of the Total Environment, 2019, 678: 761-767.
doi: 10.1016/j.scitotenv.2019.04.395
|
[2] |
SONG Y, WANG Y, MAO W F, SUI H X, YONG L, YANG D J, JIANG D G, ZHANG L, GONG Y Y. Dietary cadmium exposure assessment among the Chinese population. PLoS ONE, 2017, 12 (5): e0177978.
|
[3] |
汪鹏, 王静, 陈宏坪, 周东美, 赵方杰. 我国稻田系统镉污染风险与阻控. 农业环境科学学报, 2018, 37(7): 1409-1417.
|
|
WANG P, WANG J, CHEN H P, ZHOU D M, ZHAO F J. Cadmium risk and mitigation in paddy systems in China. Journal of Agro-Environment Science, 2018, 37(7): 1409-1417. (in Chinese)
|
[4] |
MENDOZA-CÓZATL D G, JOBE T O, HAUSER F, SCHROEDER J I. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Current Opinion in Plant Biology, 2011, 14(5): 554-562.
|
[5] |
彭佳师, 王娅婷, 王梦琦, 卢玲丽, 汪鹏, 李柱, 李赛, 陈思颖, 孟栓, 顾天宇, 等. 植物重金属镉积累调控机制及其应用研究进展. 植物生理学报, 2024, 60(2): 185-210.
|
|
PENG J S, WANG Y T, WANG M Q, LU L L, WANG P, LI Z, LI S, CHEN S Y, MENG S, GU T Y, et al. Research and regulation of cadmium uptake, transport and accumulation in plants. Plant Physiology Journal, 2024, 60(2): 185-210. (in Chinese)
|
[6] |
SASAKI A, YAMAJI N, YOKOSHO K, MA J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 2012, 24(5): 2155-2167.
doi: 10.1105/tpc.112.096925
pmid: 22589467
|
[7] |
ISHIKAWA S, ISHIMARU Y, IGURA M, KURAMATA M, ABE T, SENOURA T, HASE Y, ARAO T, NISHIZAWA N K, NAKANISHI H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19166-19171.
|
[8] |
TANG L, MAO B G, LI Y K, LV Q M, ZHANG L P, CHEN C Y, HE H J, WANG W P, ZENG X F, SHAO Y, et al. Knockout of OsNramp 5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports, 2017, 7(1): 14438.
|
[9] |
CHANG J D, HUANG S, YAMAJI N, ZHANG W W, MA J F, ZHAO F J. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant, Cell & Environment, 2020, 43(10): 2476-2491.
|
[10] |
YAN H L, XU W X, XIE J Y, GAO Y W, WU L L, SUN L, FENG L, CHEN X, ZHANG T, DAI C H, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications, 2019, 10(1): 2562.
doi: 10.1038/s41467-019-10544-y
pmid: 31189898
|
[11] |
TAN L T, QU M M, ZHU Y X, PENG C, WANG J R, GAO D Y, CHEN C Y. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiology, 2020, 183(3): 1235-1249.
doi: 10.1104/pp.19.01569
pmid: 32341004
|
[12] |
FU S, LU Y S, ZHANG X, YANG G Z, CHAO D, WANG Z G, SHI M X, CHEN J G, CHAO D Y, LI R B, MA J F, XIA J X. The ABC transporter ABCG36 is required for cadmium tolerance in rice. Journal of Experimental Botany, 2019, 70(20): 5909-5918.
doi: 10.1093/jxb/erz335
pmid: 31328224
|
[13] |
TAKAHASHI R, ISHIMARU Y, SHIMO H, OGO Y, SENOURA T, NISHIZAWA N K, NAKANISHI H. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant, Cell & Environment, 2012, 35(11): 1948-1957.
|
[14] |
YAMAJI N, XIA J X, MITANI-UENO N, YOKOSHO K, MA J F. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 2013, 162(2): 927-939.
doi: 10.1104/pp.113.216564
pmid: 23575418
|
[15] |
STERCKEMAN T, THOMINE S. Mechanisms of cadmium accumulation in plants. Critical Reviews in Plant Sciences, 2020, 39(4): 322-359.
|
[16] |
LUO J S, HUANG J, ZENG D L, PENG J S, ZHANG G B, MA H L, GUAN Y, YI H Y, FU Y L, HAN B, LIN H X, QIAN Q, GONG J M. A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018, 9(1): 645.
|
[17] |
UENO D, YAMAJI N, KONO I, HUANG C F, ANDO T, YANO M, MA J F. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16500-16505.
|
[18] |
YANG G Z, FU S, HUANG J J, LI L Y, LONG Y, WEI Q X, WANG Z G, CHEN Z W, XIA J X. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice. Plant Science, 2021, 307: 110894.
|
[19] |
URAGUCHI S, KAMIYA T, CLEMENS S, FUJIWARA T. Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiologia Plantarum, 2014, 151(3): 339-347.
|
[20] |
URAGUCHI S, KAMIYA T, SAKAMOTO T, KASAI K, SATO Y, NAGAMURA Y, YOSHIDA A, KYOZUKA J, ISHIKAWA S, FUJIWARA T. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20959-20964.
|
[21] |
HAO X H, ZENG M, WANG J, ZENG Z W, DAI J L, XIE Z J, YANG Y Z, TIAN L F, CHEN L B, LI D P. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Frontiers in Plant Science, 2018, 9: 476.
doi: 10.3389/fpls.2018.00476
pmid: 29696032
|
[22] |
WANG T K, LI Y X, FU Y F, XIE H J, SONG S F, QIU M D, WEN J, CHEN M W, CHEN G, TIAN Y, LI C X, YUAN D Y, WANG J L, LI L. Mutation at different sites of metal transporter gene OsNramp5 affects Cd accumulation and related agronomic traits in rice (Oryza sativa L.). Frontiers in Plant Science, 2019, 10: 1081.
|
[23] |
CHANG J D, HUANG S, KONISHI N, WANG P, CHEN J, HUANG X Y, MA J F, ZHAO F J. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. Journal of Experimental Botany, 2020, 71(18): 5705-5715.
|
[24] |
ZHAO F J, CHANG J D. A weak allele of OsNRAMP5 for safer rice. Journal of Experimental Botany, 2022, 73(18): 6009-6012.
|
[25] |
LV Q M, LI W G, SUN Z Z, OUYANG N, JING X, HE Q, WU J, ZHENG J K, ZHENG J T, TANG S Q, et al. Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11: 4778.
doi: 10.1038/s41467-020-18608-0
pmid: 32963241
|
[26] |
SHAO J F, XIA J X, YAMAJI N, SHEN R F, MA J F. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. Journal of Experimental Botany, 2018, 69(10): 2743-2752.
|
[27] |
LU C N, ZHANG L X, TANG Z, HUANG X Y, MA J F, ZHAO F J. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environment International, 2019, 126: 619-626.
|
[28] |
王垚, 胡博, 邓小秋, 蒋佳佳, 杜兰芳, 彭佳师. 伴矿景天SpPCR3基因提高酵母对镉的抗性. 植物生理学报, 2022, 58(7): 1353-1358.
|
|
WANG Y, HU B, DENG X Q, JIANG J J, DU L F, PENG J S. SpPCR3 gene from Sedum plumbizincicola confers cadmium tolerance in yeast. Plant Physiology Journal, 2022, 58(7): 1353-1358. (in Chinese)
|
[29] |
张雪洁, 张治远, 张仕泽, 白宁宁, 刘敏, 彭佳师. 甘蓝型油菜植物螯合肽合酶基因BnPCS1a的分离与功能验证. 植物生理学报, 2023, 59(5): 861-868.
|
|
ZHANG X J, ZHANG Z Y, BAI N N, LIU M, PENG J S. Isolation and functional characterization of phytochelatin synthase gene BnPCS1a in Brassica napus. Plant Physiology Journal, 2023, 59 (5): 861-868. (in Chinese)
|
[30] |
张培红, 张仕泽, 张治远, 李明悦, 刘奕君, 张雪洁, 白宁宁, 马敏, 彭佳师. 伴矿景天SpHIPP45基因特异介导镉耐受性. 植物生理学报, 2022, 58(7): 1346-1352.
|
|
ZHANG P H, ZHANG S Z, ZHANG Z Y, LI M Y, LIU Y J, ZHANG X J, BAI N N, MA M, PENG J S. SpHIPP45 gene from Sedum plumbizincicola specifically mediates cadmium tolerance. Plant Physiology Journal, 2022, 58(7): 1346-1352. (in Chinese)
|
[31] |
TAN L T, ZHU Y X, FAN T, PENG C, WANG J R, SUN L, CHEN C Y. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118.
doi: S0006-291X(19)30401-2
pmid: 30871778
|
[32] |
HUANG S, SASAKI A, YAMAJI N, OKADA H, MITANI-UENO N, MA J F. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiology, 2020, 183(3): 1224-1234.
doi: 10.1104/pp.20.00125
pmid: 32371522
|
[33] |
CHU C L, HUANG R Y, LIU L P, TANG G L, XIAO J H, YOO H, YUAN M. The rice heavy-metal transporter OsNRAMP1 regulates disease resistance by modulating ROS homoeostasis. Plant, Cell & Environment, 2022, 45(4): 1109-1126.
|
[34] |
GU T Y, QI Z A, CHEN S Y, YAN J, FANG Z J, WANG J M, GONG J M. Dual-function DEFENSIN8 mediates phloem cadmium unloading and accumulation in rice grains. Plant Physiology, 2023, 191(1): 515-527.
|
[35] |
YAMAJI N, MA J F. Node-controlled allocation of mineral elements in Poaceae. Current Opinion in Plant Biology, 2017, 39: 18-24.
doi: S1369-5266(17)30052-3
pmid: 28558362
|