[1] |
KAMOUN S, FURZER O, JONES J D, JUDELSON H S, ALI G S, DALIO R J, ROY S G, SCHENA L, ZAMBOUNIS A, PANABIÈRES F, et al. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16(4): 413-434.
doi: 10.1111/mpp.12190
pmid: 25178392
|
[2] |
PANABIERES F, ALI G S, ALLAGUI M B, DALIO R J D, GUDMESTAD N C, KUHN M, GUHA ROY S, SCHENA L, ZAMPOUNIS A. Phytophthora nicotianae diseases worldwide: New knowledge of a long-recognised pathogen. Phytopathologia Mediterranea, 2016, 55(1): 20-40.
|
[3] |
苗建强, 蔡萌, 张灿, 李腾蛟, 刘西莉. 植物病原卵菌对重要抑制剂的抗性分子机制研究进展. 农药学学报, 2019, 21(5/6): 736-746.
|
|
MIAO J Q, CAI M, ZHANG C, LI T J, LIU X L. Molecular resistance mechanism of phytopathogenic oomycete to several important fungicides. Chinese Journal of Pesticide Science, 2019, 21(5/6): 736-746. (in Chinese)
|
[4] |
周怡青, 肖友利. 活性天然产物靶标蛋白的鉴定. 化学学报, 2018, 76(3): 177-189.
doi: 10.6023/A17110484
|
|
ZHOU Y Q, XIAO Y L. Target identification of bioactive natural products. Acta Chimica Sinica, 2018, 76(3): 177-189. (in Chinese)
doi: 10.6023/A17110484
|
[5] |
SPARKS T C, BRYANT R J. Impact of natural products on discovery of, and innovation in, crop protection compounds. Pest Management Science, 2022, 78(2): 399-408.
|
[6] |
BHATTACHARYYA A, SINHA M, SINGH H, PATEL R S, GHOSH S, SARDANA K, GHOSH S, SENGUPTA S. Mechanistic insight into the antifungal effects of a fatty acid derivative against drug-resistant fungal infections. Frontiers in Microbiology, 2020, 11: 2116.
doi: 10.3389/fmicb.2020.02116
pmid: 33013771
|
[7] |
KUMAR P, LEE J H, BEYENAL H, LEE J. Fatty acids as antibiofilm and antivirulence agents. Trends in Microbiology, 2020, 28: 753-768.
doi: S0966-842X(20)30085-8
pmid: 32359781
|
[8] |
WON S R, HONG M J, KIM Y M, LI C Y, KIM J W, RHEE H I. Oleic acid: An efficient inhibitor of glucosyltransferase. FEBS Letters, 2007, 581(25): 4999-5002.
|
[9] |
SCHÖNFELD P, WOJTCZAK L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radical Biology and Medicine, 2008, 45(3): 231-241.
doi: 10.1016/j.freeradbiomed.2008.04.029
pmid: 18482593
|
[10] |
ZHANG X, LI Q, WANG M, MA S, ZHENG Y, LI Y, ZHAO D, ZHANG C. 2E, 4E-Decadienoic acid, a novel anti-oomycete agent from coculture of Bacillus subtilis and Trichoderma asperellum. Microbiology Spectrum, 2022, 10(4): e0154222.
|
[11] |
LI Q, LIN W, ZHANG X, WANG M, ZHENG Y, WANG X, GAO G, LI Y, ZHAO D, ZHANG C. Transcriptomics integrated with metabolomics reveal the competitive relationship between co-cultured Trichoderma asperellum HG1 and Bacillus subtilis Tpb55. Microbiological Research, 2024, 280: 127598.
|
[12] |
HAN T, YOU C, ZHANG L, FENG C, ZHANG C, WANG J, KONG F. Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank. BioControl, 2016, 61: 195-205.
|
[13] |
WANG Y, LIU M, HAN X, ZHENG Y, CHAO J, ZHANG C S. Prickly ash seed kernel: A new bio-fumigation material against tobacco black shank. Agronomy, 2020, 10(6): 770.
|
[14] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
|
|
BAO S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000. (in Chinese)
|
[15] |
DURAN P, THIERGART T, GARRIDO-OTER R, AGLER M, KEMEN E, SCHULZE-LEFERT P, HACQUARD S. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell, 2018, 175(4): 973-983.e14.
|
[16] |
CHEN Y, WANG J, YANG N, WEN Z, SUN X, CHAI Y, MA Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications, 2018, 9(1): 3429.
|
[17] |
MAGOC T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963.
doi: 10.1093/bioinformatics/btr507
pmid: 21903629
|
[18] |
EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996-998.
doi: 10.1038/nmeth.2604
pmid: 23955772
|
[19] |
WANG Q, GARRITY G M, TIEDJE J M, COLE J R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.
doi: 10.1128/AEM.00062-07
pmid: 17586664
|
[20] |
YANG Z, KALIAPERUMAL K, ZHANG J, LIANG Y, GUO C, ZHANG J, YANG B, LIU Y. Antifungal fatty acid derivatives against Penicillium italicum from the deep-sea fungus Aspergillus terreus SCSIO 41202. Natural Product Research, 2021, 35(22): 4394-4401.
|
[21] |
MILLAN A F, GAMIR J, FARRAN I, LARRAYA L, VERAMENDI J. Identification of new antifungal metabolites produced by the yeast Metschnikowia pulcherrima involved in the biocontrol of postharvest plant pathogenic fungi. Postharvest Biology and Technology, 2022, 192: 111995.
|
[22] |
WANG Y S, HUANG Y J, CHEN W C, YEN J H. Effect of carbendazim and pencycuron on soil bacterial community. Journal of Hazardous Materials, 2009, 172: 84-91.
|
[23] |
WANG X, SONG M, WANG Y, GAO C, ZHANG Q, CHU X, FANG H, YU Y. Response of soil bacterial community to repeated applications of carbendazim. Ecotoxicology and Environmental Safety, 2012, 75: 33-39.
doi: 10.1016/j.ecoenv.2011.08.014
pmid: 21872928
|
[24] |
崔凯. 甲基硫菌灵及其代谢物多菌灵防控黄瓜枯萎病发生的根际微生物效应[D]. 北京: 中国农业科学院, 2021.
|
|
CUI K. The effects of thiophanate-methyl and its metabolite carbendazim on the cucumber rhizosphere microbiota in the control of cucumber Fusarium wilt[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
|
[25] |
SANG M K, KIM K D. Plant growth-promoting rhizobacteria suppressive to Phytophthora blight affect microbial activities and communities in the rhizosphere of pepper (Capsicum annuum L.) in the field. Applied Soil Ecology, 2012, 62: 88-97.
|
[26] |
YOU C, ZHANG C, KONG F, FENG C, WANG J. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl- mancozeb on bacterial communities in tobacco rhizospheric soil. Ecological Engineering, 2016, 91: 119-125.
|
[27] |
IMFELD G, VUILLEUMIER S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. European Journal of Soil Biology, 2012, 49: 22-30.
|
[28] |
BAĆMAGA M, WYSZKOWSKA J, KUCHARSKI J. Response of soil microorganisms and enzymes to the foliar application of Helicur 250 EW fungicide on Horderum vulgare L. Chemosphere, 2020, 242: 125163.
|
[29] |
于欣茹. 棉花根际黑曲霉和棘孢木霉抗黄萎病菌蛋白的研究[D]. 南京: 南京农业大学, 2021.
|
|
YU X R. Anti-Verticillium dahliae protein of Aspergillus niger and Trichoderma aculeatus in cotton rhizosphere[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
|
[30] |
翟妮平. 土壤淡色丝孢真菌稀有物种的挖掘及有生防潜力丝孢菌的筛选[D]. 郑州: 河南农业大学, 2019.
|
|
ZHAI N P. Exploitation of rare species of soil moniliaceous Hyphomycete and screening of potential biocontrol Hyphomycete[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese)
|
[31] |
TRAN T T, PHAM T Q, BARBER P A, NGUYEN C M. Control of Ceratocystis manginecans causing wilt disease on Acacia mangium seedlings. Australasian Plant Pathology, 2018, 47: 579-586.
|
[32] |
BABA T, HIROSE D, NOMA S, BAN T. Inoculation with two Oidiodendron maius strains differentially alters the morphological characteristics of fibrous and pioneer roots of Vaccinium virgatum ‘Tifblue’ cuttings. Scientia Horticulturae, 2021, 281: 109948.
|
[33] |
李恩星. 烟株根际土壤微生态对烟草根结线虫病的响应特征研究[D]. 昆明: 云南农业大学, 2023.
|
|
LI E X. Response characteristics of rhizosphere soil microecology of tobacco plants to tobacco root-knot nematode disease[D]. Kunming: Yunnan Agricultural University, 2023. (in Chinese)
|
[34] |
罗嘉润. 秸秆还田配施氮肥早期对水稻生长、土壤性质及土壤微生物的影响[D]. 荆州: 长江大学, 2023.
|
|
LUO J R. Effects of straw returning and nitrogen fertilizer application on rice growth, soil properties and microbial diversity in the early stage[D]. Jingzhou: Yangtze University, 2023. (in Chinese)
|
[35] |
李伟山, 纠敏, 周冬梅, 姚壮豪, 周阳, 魏利辉. 寡雄腐霉GAQ1对辣椒疫病的防效及对辣椒的促生作用. 植物保护学报, 2022, 49(3): 956-965.
|
|
LI W S, JIU M, ZHOU D M, YAO Z H, ZHOU Y, WEI L H. Biological control and growth-promotion effects of mycoparasitic fungus Pythium oligandrum GAQ1 against Phytophthora blight in pepper. Journal of Plant Protection, 2022, 49(3): 956-965. (in Chinese)
|
[36] |
PAUL B. Pythium periplocum, an aggressive mycoparasite of Botrytis cinerea causing the gray mould disease of grapevine. FEMS Microbiology Letters, 1999, 181: 277-280.
|