[1] |
MARON L G, KIRST M, MAO C Z, MILNER M J, MENOSSI M, KOCHIAN L V. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. The New Phytologist, 2008, 179(1): 116-128.
|
[2] |
朱海凤. 水稻和荞麦抗铝毒转录因子ART1调控机制的研究[D]. 南京: 南京农业大学, 2016.
|
|
ZHU H F. Regulation mechanisms of Art1, an aluminum- resistant transcription factor, in rice and buckwheat (Fagopyrum tataricum)[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
|
[3] |
FAN Y, JIN Y N, DING M Q, TANG Y, CHENG J P, ZHANG K X, ZHOU M L. The complete chloroplast genome sequences of eight fagopyrum species: Insights into genome evolution and phylogenetic relationships. Frontiers in Plant Science, 2021, 12: 799904.
|
[4] |
WANG H, CHEN R F, IWASHITA T, SHEN R F, MA J F. Physiological characterization of aluminum tolerance and accumulation in Tartary and wild buckwheat. The New Phytologist, 2015, 205(1): 273-279.
|
[5] |
胡湘云, 王奕文, 方幽文, 邵烨瑶, 姚慧, 唐星宇, 连旖晴, 谭莹, 朱怡杰, 江帆, 李春俣, 吴玉环, 蔡妙珍, 徐根娣, 刘鹏. 酸性土壤下缓解大豆铝胁迫的研究进展. 科学通报, 2023, 68(33): 4517-4531.
|
|
HU X Y, WANG Y W, FANG Y W, SHAO Y Y, YAO H, TANG X Y, LIAN Y Q, TAN Y, ZHU Y J, JIANG F, LI C Y, WU Y H, CAI M Z, XU G D, LIU P. Research progress on alleviating aluminum stress in soybean under acid soil. Chinese Science Bulletin, 2019, 68(33): 4517-4531. (in Chinese)
|
[6] |
赵学强, 潘贤章, 马海艺, 董晓英, 车景, 王超, 时玉, 柳开楼, 沈仁芳. 中国酸性土壤利用的科学问题与策略. 土壤学报, 2023, 60(5): 1248-1263.
|
|
ZHAO X Q, PAN X Z, MA H Y, DONG X Y, CHE J, WANG C, SHI Y, LIU K L, SHEN R F. Scientific issues and strategies of acid soil use in China. Acta Pedologica Sinica, 2023, 60(5): 1248-1263. (in Chinese)
|
[7] |
邓晓霞, 李月明, 姚堃姝, 乔婧文, 王竞红, 蔺吉祥. 植物适应酸铝胁迫机理的研究进展. 生物工程学报, 2022, 38(8): 2754-2766.
|
|
DENG X X, LI Y M, YAO K S, QIAO J W, WANG J H, LIN J X. Advances in the mechanism of plant adaptation to acid aluminum stress. Journal of Biotechnology, 2022, 38(8): 2754-2766. (in Chinese)
|
[8] |
JIAN Z S, FENG M J, MATSUMOTO H. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiology, 1998, 117(3): 745-751.
|
[9] |
杨建立. 植物耐铝毒基因型差异及荞麦耐铝机理研究[D]. 杭州: 浙江大学, 2004.
|
|
YANG J L. Genotypic difference among plant species in response to aluminum stress and mechanisms of aluminum resistance in buckwheat (fygopyrum esculentum moench)[D]. Hangzhou: Zhejiang University, 2004. (in Chinese)
|
[10] |
SHEN R F, CHEN R F, MA J F. Buckwheat accumulates aluminum in leaves but not in seeds. Plant and Soil, 2006, 284(1): 265-271.
|
[11] |
LEI G J, YOKOSHO K, YAMAJI N, FUJII-KASHINO M, MA J F. Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat. The New Phytologist, 2017, 215(3): 1080-1089.
|
[12] |
ROIG-VILLANOVA I, BOU-TORRENT J, GALSTYAN A, CARRETERO-PAULET L, PORTOLÉS S, RODRÍGUEZ- CONCEPCIÓN M, MARTÍNEZ-GARCÍA J F. Interaction of shade avoidance and auxin responses: A role for two novel atypical bHLH proteins. The EMBO Journal, 2007, 26(22): 4756-4767.
|
[13] |
王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展. 生命科学研究, 2016, 20(4): 358-364.
|
|
WANG C, LAN H Y. Research progresses on functions of plant bHLH transcription factors involved in abiotic stresses. Life Science Research, 2016, 20(4): 358-364. (in Chinese)
|
[14] |
XU J M, FAN W, JIN J F, LOU H Q, CHEN W W, YANG J L, ZHENG S J. Transcriptome analysis of al-induced genes in buckwheat (Fagopyrum esculentum Moench) root apex: New insight into Al toxicity and resistance mechanisms in an Al accumulating species. Frontiers in Plant Science, 2017, 8: 1141.
|
[15] |
LARSEN P B, CANCEL J, ROUNDS M, OCHOA V. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta, 2007, 225(6): 1447-1458.
|
[16] |
DONG J S, PIÑEROS M A, LI X X, YANG H B, LIU Y, MURPHY A S, KOCHIAN L V, LIU D. An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots. Molecular Plant, 2017, 10(2): 244-259.
|
[17] |
时玮玮. 两种不同铝剂对甘肃黄花烟草抗病性的不同效应[D]. 兰州: 兰州大学, 2008.
|
|
SHI W W. Effects of two different valence of aluminum on tobacco disease resistance[D]. Lanzhou: Lanzhou University, 2008. (in Chinese)
|
[18] |
钱绍方. 丹波黑大豆bHLH30转录因子功能研究[D]. 昆明: 昆明理工大学, 2012.
|
|
QIAN S F. The study on the function of transcription factor bHLH30 Glycine max tamba[D]. Kunming: Kunming University of Science and Technology, 2012. (in Chinese)
|
[19] |
宋倩, 钱绍方, 陈宣钦, 陈丽梅, 李昆志. 丹波黑大豆GmbHLH30转录因子耐铝功能初步研究. 生命科学研究, 2014, 18(4): 332-337.
|
|
SONG Q, QIAN S F, CHEN X Q, CHEN L M, LI K Z. Study on the function of transcription factor GmbHLH30 on aluminum tolerance preliminary in Tampa black soybean. Life Science Research, 2014, 18(4): 332-337. (in Chinese)
|
[20] |
LAI D L, ZHANG K X, HE Y Q, FAN Y, LI W, SHI Y L, GAO Y F, HUANG X, HE J Y, ZHAO H, LU X, XIAO Y W, CHENG J P, RUAN J J, GEORGIEV M I, FERNIE A R, ZHOU M L. Multi-omics identification of a key glycosyl hydrolase gene FtGH1 involved in rutin hydrolysis in Tartary buckwheat (Fagopyrum tataricum). Plant Biotechnology Journal, 2024, 22(5): 1206-1223.
|
[21] |
ZHANG K X, HE M, FAN Y, ZHAO H, GAO B, YANG K L, LI F L, TANG Y, GAO Q, LIN T, QUINET M, JANOVSKÁ D, MEGLIČ V, KWIATKOWSKI J, ROMANOVA O, CHRUNGOO N, SUZUKI T, LUTHAR Z, GERM M, WOO S H, GEORGIEV M I, ZHOU M L. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology, 2021, 22(1): 23.
|
[22] |
ZHANG W H, RYAN P R, SASAKI T, YAMAMOTO Y, SULLIVAN W, TYERMAN S D. Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant & Cell Physiology, 2008, 49(9): 1316-1330.
|
[23] |
SASAKI T, YAMAMOTO Y, EZAKI B, KATSUHARA M, AHN S J, RYAN P R, DELHAIZE E, MATSUMOTO H. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal, 2004, 37(5): 645-653.
|
[24] |
唐德松. 儿茶素与Al3+的作用及饮茶与铝的聚集性研究[D]. 杭州: 浙江大学, 2003.
|
|
TANG D S. Study on the interaction between catechins and Al3+ and the aggregation of tea and aluminum[D]. Hangzhou: Zhejiang University, 2003. (in Chinese)
|
[25] |
姑丽巴哈尔·艾木都拉, 张石蕾, 刘涛, 姚雨含, 赵军. 烟花苷对H2O2致LO2细胞损伤的保护作用. 中国药业, 2020, 29(15): 42-46.
|
|
GULIBAHAR A, ZHANG S L, LIU T, YAO Y H, ZHAO J. Protective effect of nicotiflorin from Nymphaea candida on H2O2-induced LO2 cells damage. China Pharmaceuticals, 2020, 29(15): 42-46. (in Chinese)
|
[26] |
KIDD P S, LLUGANY M, POSCHENRIEDER C, GUNSÉ B, BARCELÓ J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). Journal of Experimental Botany, 2001, 52(359): 1339-1352.
|
[27] |
朱美红, 吴韶辉, 刘鹏, 徐根娣, 蔡妙珍. 铝胁迫下磷对荞麦根系和根边缘细胞抗性生理的影响. 浙江农业学报, 2009, 21(3): 264-268.
|
|
ZHU M H, WU S H, LIU P, XU G D, CAI M Z. Effect of phosphorus on the resistance of roots and border cells to aluminum in buckwheat. Acta Agriculturae Zhejiangensis, 2009, 21(3): 264-268. (in Chinese)
|
[28] |
贾莲, 张冬, 张吉斯, 吕琳琳, 刁全平. 镉胁迫对忍冬抗氧化酶活性及内源激素含量的影响. 地球与环境, 2024, 52(1): 21-28.
|
|
JIA L, ZHANG D, ZHANG J S, LÜ L L, DIAO Q P. Effect of cadmium stress on antioxidant enzyme activity and endogenous hormones content in Lonicera japonica thunb. Earth and the Environment, 2024, 52(1): 21-28. (in Chinese)
|
[29] |
YANG Z, YANG F, LIU J L, WU H T, YANG H, SHI Y, LIU J, ZHANG Y F, LUO Y R, CHEN K M. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. The Science of the Total Environment, 2022, 809: 151099.
|
[30] |
HUANG C F, YAMAJI N, CHEN Z C, MA J F. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. The Plant Journal, 2012, 69(5): 857-867.
|
[31] |
ZHAO J, WANG C X, BEDAIR M, WELTI R, SUMNER L W, BAXTER I, WANG X M. Suppression of phospholipase Dgammas confers increased aluminum resistance in Arabidopsis thaliana. PLoS ONE, 2011, 6(12): e28086.
|