中国农业科学 ›› 2022, Vol. 55 ›› Issue (19): 3791-3806.doi: 10.3864/j.issn.0578-1752.2022.19.009
张鑫尧1(),张敏1(
),朱远芃1,惠晓丽2,柴如山1,郜红建1,罗来超1(
)
收稿日期:
2021-08-19
接受日期:
2021-12-07
出版日期:
2022-10-01
发布日期:
2022-10-10
通讯作者:
罗来超
作者简介:
张鑫尧,E-mail: 基金资助:
ZHANG XinYao1(),ZHANG Min1(
),ZHU YuanPeng1,HUI XiaoLi2,CHAI RuShan1,GAO HongJian1,LUO LaiChao1(
)
Received:
2021-08-19
Accepted:
2021-12-07
Online:
2022-10-01
Published:
2022-10-10
Contact:
LaiChao LUO
摘要:
【目的】探讨稻麦轮作体系下磷肥减量施用对作物籽粒产量与营养品质的影响,为巢湖流域稻麦轮作体系下磷肥减量增效,作物优质生产提供理论依据。【方法】于2017—2019年在巢湖流域进行磷肥减量施用田间试验,设置5个处理:对照(CK,不施磷)、农户模式(P1,磷用量90 kg P2O5·hm-2)、减磷10%(P2,磷用量81 kg P2O5·hm-2)、减磷20%(P3,磷用量72 kg P2O5·hm-2)、减磷30%(P4,磷用量63 kg P2O5·hm-2)。分析磷肥减量施用对水稻和小麦产量及其构成要素,籽粒蛋白质及组分含量,微量元素及其生物有效性的影响。【结果】与不施磷相比,施磷水稻和小麦的籽粒产量分别显著提高了9.8%—28.3%和56.6%—89.7%。减磷10%和20%处理的水稻和小麦籽粒产量与农户模式无显著差异(P>0.05),但减磷30%处理的水稻产量显著降低14.4%。与农户模式相比,减磷处理显著影响作物蛋白质、醇溶蛋白和谷蛋白含量,对结构蛋白(清蛋白+球蛋白)无显著影响,减磷20%处理水稻籽粒蛋白质和谷蛋白含量降低2.7%和32.3%,减磷30%处理的水稻和小麦籽粒蛋白质和谷蛋白含量分别降低6.8%和21.9%、48.4%和31.6%。与不施磷相比,施磷同样显著影响水稻和小麦籽粒微量元素含量及其生物有效性。减磷处理较农户模式水稻和小麦籽粒Fe、Cu和Zn含量提高21.2%和19.3%、11.9%和15.8%、14.5%和19.9%;P/Fe、P/Cu和P/Zn摩尔比降低21.6%和26.3%、20.6%和27%、17.7%和21.3%。水稻和小麦籽粒Zn含量随施磷量的降低而线性增加,减磷处理间的作物籽粒Fe、Mn和Cu含量无显著差异。水稻籽粒P/Zn摩尔比随施磷量的降低而降低,减磷处理间籽粒P/Fe、P/Mn和P/Cu摩尔比无显著差异;小麦籽粒P/Fe、P/Mn、P/Cu和P/Zn摩尔比均随施磷量的降低而降低,提高了小麦籽粒Fe、Cu和Zn的生物有效性。【结论】在巢湖流域稻麦轮作区,磷肥减量20%,即磷肥用量由90 kg P2O5·hm-2减至72 kg P2O5·hm-2时仍可保证作物稳产。磷肥减量施用虽在一定程度上降低了籽粒蛋白质含量和谷蛋白含量,但显著提高了微量元素Fe、Cu和Zn的含量和生物有效性。综合考虑,推荐磷肥减量20%为巢湖流域稻麦轮作区实现磷肥增效及作物高产优质生产的磷肥优化管理措施。
张鑫尧,张敏,朱远芃,惠晓丽,柴如山,郜红建,罗来超. 巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响[J]. 中国农业科学, 2022, 55(19): 3791-3806.
ZHANG XinYao,ZHANG Min,ZHU YuanPeng,HUI XiaoLi,CHAI RuShan,GAO HongJian,LUO LaiChao. Effects of Reduced Phosphorus Application on Crop Yield and Grain Nutritional Quality in the Rice-Wheat Rotation System in Chaohu Lake Basin[J]. Scientia Agricultura Sinica, 2022, 55(19): 3791-3806.
表2
水稻籽粒蛋白质及其组分含量对磷肥减量的响应"
年份 Year | 处理 Treatment | 蛋白质含量 Protein content (%) | 清蛋白含量 Albumin content (%) | 球蛋白含量 Globulin content (%) | 醇溶蛋白含量 Gliadin content (%) | 谷蛋白含量 Glutenin content (%) |
---|---|---|---|---|---|---|
2017 | CK | 6.6±0.1c | 0.8±0.2c | 0.9±0.1b | 2.0±0.3ab | 2.2±0.1ab |
P1 | 7.6±0.3a | 1.7±0.3a | 1.0±0.1ab | 1.3±0.3b | 2.8±0.4a | |
P2 | 7.3±0.1ab | 1.3±0.5ab | 1.0±0.1ab | 2.7±0.5a | 1.6±0.4b | |
P3 | 7.3±0.2ab | 1.8±0.3a | 1.3±0.2a | 1.6±0.6ab | 1.9±0.5b | |
P4 | 7.0±0.1b | 1.4±0.3ab | 1.2±0.1ab | 2.6±0.2a | 1.2±0.1b | |
2018 | CK | 6.7±0.2b | 1.0±0.1a | 0.6±0.1b | 3.1±0.2a | 1.8±0.1b |
P1 | 7.3±0.1a | 0.5±0.2b | 1.4±0.5a | 1.9±0.2c | 3.3±0.5a | |
P2 | 7.2±0.1a | 0.8±0.2ab | 1.1±0.1a | 2.3±0.1bc | 2.5±0.3b | |
P3 | 7.0±0.1a | 1.1±0.1a | 1.1±0.1a | 2.5±0.5b | 2.2±0.2b | |
P4 | 6.8±0.1b | 0.7±0.2ab | 1.0±0.2a | 2.6±0.2b | 2.0±0.1b | |
平均 Average | CK | 6.7±0.2c | 0.9±0.1b | 0.7±0.2b | 2.5±0.7ab | 2.0±0.1b |
P1 | 7.4±0.4a | 1.1±0.3ab | 1.2±0.4a | 1.6±0.5b | 3.1±0.2a | |
P2 | 7.3±0.1a | 1.0±0.1ab | 1.1±0.1a | 2.5±0.4ab | 2.1±0.3b | |
P3 | 7.2±0.3ab | 1.4±0.2a | 1.2±0.1a | 2.1±0.3ab | 2.1±0.3b | |
P4 | 6.9±0.2bc | 1.1±0.2ab | 1.1±0.2a | 2.6±0.1a | 1.6±0.4b | |
年份Year (Y) | 2.73ns | 37.10** | 0.44ns | 7.23* | 4.44* | |
处理Treatment (T) | 7.54** | 3.14* | 7.37** | 4.70** | 7.06** | |
年份×处理Year×Treatment (Y×T) | 0.51ns | 5.84** | 3.85* | 2.74ns | 1.71ns |
表3
小麦籽粒蛋白质及其组分含量对磷肥减量的响应"
年份 Year | 处理 Treatment | 蛋白质含量 Protein content (%) | 清蛋白含量 Albumin content (%) | 球蛋白含量 Globulin content (%) | 醇溶蛋白含量 Gliadin content (%) | 谷蛋白含量 Glutenin content (%) |
---|---|---|---|---|---|---|
2018 | CK | 10.6±0.5b | 1.7±0.3a | 1.4±0.1a | 3.2±0.5b | 3.6±0.1cd |
P1 | 14.5±1.2a | 1.7±0.3a | 1.5±0.1a | 4.4±0.4a | 5.3±0.2a | |
P2 | 11.4±0.3b | 1.8±0.3a | 1.4±0.2a | 3.3±0.3b | 4.5±0.2b | |
P3 | 10.5±0.4b | 1.4±0.1a | 1.4±0.1a | 2.6±0.1b | 3.8±0.3c | |
P4 | 9.7±0.4b | 1.4±0.2a | 1.6±0.2a | 3.1±0.1b | 3.0±0.4d | |
2019 | CK | 10.5±0.1b | 0.8±0.2a | 0.6±0.1a | 4.0±0.4b | 4.1±0.2c |
P1 | 12.8±0.9a | 1.1±0.2a | 0.5±0.2a | 4.2±0.3ab | 6.1±0.1a | |
P2 | 12.8±0.4a | 1.0±0.1a | 0.8±0.2a | 4.9±0.3a | 5.9±0.3a | |
P3 | 11.6±0.3ab | 1.1±0.1a | 0.6±0.2a | 4.1±0.1b | 5.2±0.2b | |
P4 | 11.6±0.2ab | 1.0±0.1a | 0.7±0.1a | 4.5±0.2ab | 4.9±0.1b | |
平均 Average | CK | 10.5±0.2c | 1.3±0.2a | 1.0±0.2a | 3.6±0.3ab | 3.8±0.2d |
P1 | 13.7±0.8a | 1.4±0.2a | 1.0±0.2a | 4.3±0.3a | 5.7±0.2a | |
P2 | 12.1±0.4b | 1.4±0.5a | 1.1±0.4a | 4.1±0.4a | 5.2±0.9b | |
P3 | 11.0±0.3bc | 1.3±0.2a | 1.0±0.2a | 3.3±0.3b | 4.5±0.3c | |
P4 | 10.7±0.5bc | 1.2±0.3a | 1.1±0.5a | 3.8±0.3ab | 3.9±0.4d | |
年份Year (Y) | 2.16ns | 23.64** | 118.18** | 28.77** | 110.62** | |
处理Treatment (T) | 10.74** | 0.44ns | 0.38ns | 3.16* | 39.45** | |
年份×处理Year×Treatment (Y×T) | 3.20* | 0.87ns | 0.59ns | 3.41* | 4.52** |
表4
稻麦轮作体系下磷肥减量对水稻籽粒微量元素含量的影响"
年份 Year | 处理 Treatment | 铁含量 Fe content (mg·kg-1) | 锰含量 Mn content (mg·kg-1) | 铜含量 Cu content (mg·kg-1) | 锌含量 Zn content (mg·kg-1) |
---|---|---|---|---|---|
2017 | CK | 36.2±0.86a | 74.9±8.04ab | 3.6±0.11a | 24.5±0.52a |
P1 | 25.2±0.43b | 86.2±5.70a | 3.4±0.27ab | 17.8±1.14c | |
P2 | 33.4±5.58a | 75.4±3.56ab | 3.4±0.09ab | 20.7±0.35b | |
P3 | 33.3±0.59a | 77.7±4.36ab | 2.9±0.21b | 21.1±0.84b | |
P4 | 31.3±0.61a | 67.2±0.48b | 3.0±0.10ab | 23.0±0.47ab | |
2018 | CK | 34.2±0.75a | 78.0±0.71bc | 3.4±0.09a | 20.0±0.55a |
P1 | 29.7±0.59b | 119.3±3.04a | 2.2±0.06c | 16.5±0.25b | |
P2 | 35.5±0.73a | 83.0±2.06b | 3.4±0.07a | 16.7±0.26b | |
P3 | 33.7±1.07a | 74.2±1.34cd | 3.1±0.10b | 18.4±0.61a | |
P4 | 32.9±1.25a | 70.8±2.75d | 3.0±0.09b | 18.4±0.70a | |
平均 Average | CK | 35.2±0.68a | 76.5±3.67b | 3.5±0.08a | 22.3±1.06a |
P1 | 27.5±1.06b | 102.8±7.94a | 2.8±0.28b | 17.2±0.60d | |
P2 | 34.4±2.56a | 79.2±2.50b | 3.4±0.05a | 18.7±0.92bcd | |
P3 | 33.5±0.56a | 76.0±2.19b | 3.0±0.11ab | 19.7±0.76bc | |
P4 | 32.1±0.71a | 69.0±1.49b | 3.0±0.16ab | 20.7±1.09b | |
年份Year (Y) | 4.53* | 59.75** | 12.91** | 0.02ns | |
处理Treatment (T) | 5.33** | 3.95* | 4.08* | 13.31** | |
年份×处理Year×Treatment (Y×T) | 0.42ns | 0.71ns | 1.60ns | 0.18ns |
表5
稻麦轮作体系下磷肥减量对小麦籽粒微量元素含量的影响"
年份 Year | 处理 Treatment | 铁含量 Fe content (mg·kg-1) | 锰含量 Mn content (mg·kg-1) | 铜含量 Cu content (mg·kg-1) | 锌含量 Zn content (mg·kg-1) |
---|---|---|---|---|---|
2018 | CK | 57.1±2.36a | 78.2±5.54a | 4.6±0.60a | 47.5±0.83a |
P1 | 45.4±1.07b | 63.4±3.23b | 2.9±0.20c | 31.6±2.07c | |
P2 | 56.3±5.16a | 68.5±2.72ab | 3.6±0.26bc | 30.7±2.32c | |
P3 | 54.2±1.70a | 70.9±4.33ab | 3.9±0.51bc | 38.2±3.43bc | |
P4 | 58.2±4.53a | 76.9±4.22ab | 4.9±0.51a | 43.1±2.01ab | |
2019 | CK | 54.0±1.73a | 61.0±1.13a | 5.4±0.39a | 42.5±0.67a |
P1 | 44.9±0.72b | 52.8±1.70b | 4.7±0.27ab | 34.8±1.62b | |
P2 | 53.2±1.36a | 54.6±0.44b | 4.6±0.17b | 35.0±1.02b | |
P3 | 50.4±1.56a | 56.0±1.42ab | 4.6±0.25b | 37.2±1.93ab | |
P4 | 51.1±2.01a | 56.3±2.89ab | 4.9±0.17ab | 40.7±2.96ab | |
平均 Average | CK | 55.6±1.49a | 69.6±4.61a | 5.0±0.37a | 45.0±1.22a |
P1 | 45.2±0.59b | 58.1±2.87c | 3.8±0.42b | 33.2±1.37c | |
P2 | 54.8±2.49a | 61.6±3.35bc | 4.1±0.25b | 32.8±1.49c | |
P3 | 52.3±1.33a | 63.4±3.91abc | 4.2±0.30b | 37.7±1.77bc | |
P4 | 54.7±2.73a | 66.6±5.15ab | 4.9±0.24a | 41.9±1.69ab | |
年份Year (Y) | 1.19ns | 12.67** | 9.19** | 73.79** | |
处理Treatment (T) | 5.05** | 21.90** | 10.77** | 19.31** | |
年份×处理Year×Treatment (Y×T) | 0.76ns | 6.58** | 6.89** | 2.49ns |
表6
稻麦轮作体系下磷肥减量对水稻籽粒微量元素生物有效性的影响"
年份 Year | 处理 Treatment | 磷铁摩尔比 P/Fe | 磷锰摩尔比 P/Mn | 磷铜摩尔比 P/Cu | 磷锌摩尔比 P/Zn |
---|---|---|---|---|---|
2017 | CK | 144.8±5.1b | 70.5±8.1a | 1640.9±74.8a | 250.4±7.4b |
P1 | 202.6±2.9a | 58.9±4.8a | 1759.0±143.0a | 339.3±24.8a | |
P2 | 164.8±32.5ab | 67.5±3.6a | 1704.6±67.5a | 291.0±6.5b | |
P3 | 152.2±3.9ab | 64.4±3.7a | 2003.1±118.5a | 281.5±5.0b | |
P4 | 159.3±2.5ab | 73.1±0.5a | 1879.4±83.8a | 254.3±7.5b | |
2018 | CK | 137.1±3.0c | 59.1±0.5c | 1576.0±41.7c | 274.4±7.7c |
P1 | 200.2±7.6a | 49.1±1.7d | 3023.8±187.3a | 422.4±17.0a | |
P2 | 155.3±3.6b | 65.3±1.4b | 1835.6±41.5bc | 385.9±7.4a | |
P3 | 157.2±6.5b | 70.1±1.8ab | 1963.1±68.5b | 336.9±10.7b | |
P4 | 158.6±5.3b | 72.4±2.4a | 2006.8±41.8b | 331.2±10.4b | |
平均 Average | CK | 141.0±3.2b | 64.8±4.4b | 1608.5±41.0b | 262.4±7.2d |
P1 | 201.4±3.7a | 54.0±3.2a | 2391.4±301.8a | 380.9±22.9a | |
P2 | 160.1±14.8b | 66.4±1.8a | 1770.1±46.0b | 338.5±21.7b | |
P3 | 154.7±3.6b | 67.3±2.3a | 1983.1±61.8ab | 309.2±13.5bc | |
P4 | 159.0±2.6b | 72.8±1.1a | 1943.1±50.7b | 292.7±18.1d | |
年份Year (Y) | 0.19ns | 2.58ns | 18.19** | 78.63** | |
处理Treatment (T) | 8.13** | 7.30** | 17.13** | 28.74** | |
年份×处理Year×Treatment (Y×T) | 0.13ns | 1.91ns | 15.41** | 2.75ns |
表7
稻麦轮作体系下磷肥减量对小麦籽粒微量元素生物有效性的影响"
年份 Year | 处理 Treatment | 磷铁摩尔比 P/Fe | 磷锰摩尔比 P/Mn | 磷铜摩尔比 P/Cu | 磷锌摩尔比 P/Zn |
---|---|---|---|---|---|
2018 | CK | 81.4±4.1c | 59.1±5.7c | 1179.1±157.2c | 114.2±1.6b |
P1 | 133.9±12.2a | 94.0±5.6a | 2347.7±123.1a | 225.7±20.5a | |
P2 | 101.6±10.2b | 81.0±4.7ab | 1773.5±132.5b | 217.8±22.1a | |
P3 | 91.9±4.7bc | 69.4±4.2bc | 1493.5±154.8bc | 154.1±10.6b | |
P4 | 86.1±5.3bc | 63.9±2.9c | 1180.5±154.4c | 135.3±4.2b | |
2019 | CK | 88.1±3.4b | 76.7±3.0b | 1002.3±66.6b | 131.0±6.3b |
P1 | 122.3±7.0a | 103.2±10.3a | 1327.6±50.5a | 186.0±15.6a | |
P2 | 95.1±0.2b | 91.2±2.6ab | 1266.2±22.9a | 169.5±4.1ab | |
P3 | 96.0±7.0b | 85.4±8.4b | 1195.3±42.7ab | 153.1±14.7ab | |
P4 | 95.6±7.9b | 85.6±7.6b | 1143.0±98.0ab | 142.5±18.8b | |
平均 Average | CK | 84.8±2.8c | 67.9±4.9d | 1090.7±86.0c | 122.6±4.8b |
P1 | 128.1±6.8a | 98.6±5.6a | 1837.6±235.7a | 205.8±14.5a | |
P2 | 98.3±4.8b | 86.1±3.3b | 1519.8±128.4b | 193.7±14.8a | |
P3 | 94.0±3.9bc | 77.4±5.5bc | 1344.4±98.0bc | 153.6±8.1b | |
P4 | 90.9±4.8bc | 74.8±6.1cd | 1161.8±82.2c | 138.9±8.8b | |
年份Year(Y) | 0.01ns | 15.43** | 33.52** | 2.22ns | |
处理Treatment(T) | 11.64** | 7.73** | 14.54** | 13.31** | |
年份×处理Year×Treatment(Y×T) | 0.84ns | 0.39ns | 5.91** | 2.23ns |
[1] |
NAGAI T, MAKINO A. Differences between rice and wheat in temperature responses of photosynthesis and plant growth. Plant and Cell Physiology, 2009, 50(4): 744-755. doi: 10.1093/pcp/pcp029.
doi: 10.1093/pcp/pcp029 pmid: 19251744 |
[2] |
SHEWRY P R. Wheat. Journal of Experimental Botany, 2009, 60(6): 1537-1553. doi: 10.1093/jxb/erp058.
doi: 10.1093/jxb/erp058 pmid: 19386614 |
[3] |
MA G S, JIN Y, LI Y P, ZHAI F Y, KOK F J, JACOBSEN E, YANG X G. Iron and zinc deficiencies in China: What is a feasible and cost-effective strategy? Public Health Nutrition, 2008, 11(6): 632-638. doi: 10.1017/S1368980007001085.
doi: 10.1017/S1368980007001085 pmid: 17894916 |
[4] | Food and Agriculture Organization of the United Nations. http://www.fao.org/home/zh/, 2019. |
[5] |
BALIGAR V C, FAGERIA N K, HE Z L. Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 2001, 32(7/8): 921-950. doi: 10.1081/CSS-100104098.
doi: 10.1081/CSS-100104098 |
[6] |
LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ- MORALES S I, LÓPEZ-BUCIO J, HERRERA-ESTRELLA L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65: 95-123. doi: 10.1146/annurev-arplant-050213-035949.
doi: 10.1146/annurev-arplant-050213-035949 |
[7] |
BARROW N J. Soil phosphate chemistry and the P-sparing effect of previous phosphate applications. Plant and Soil, 2015, 397(1/2): 401-409. doi: 10.1007/s11104-015-2514-5.
doi: 10.1007/s11104-015-2514-5 |
[8] | 汪玉, 袁佳慧, 陈浩, 陈光蕾, 赵洪猛, 徐灵颖, 赵旭, 王慎强. 太湖流域典型农田土壤磷库演变特征及环境风险预测. 土壤学报, 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20210809.1259.004.html. |
WANG Y, YUAN J H, CHEN H, CHEN G L, ZHAO H M, XU L Y, ZHAO X, WANG S Q. Soil phosphorus pool evolution and environmental risk prediction of paddy soil in the Taihu Lake Region. Acta Pedologica Sinica, 2021. https://kns.cnki.net/kcms/detail/32.1119.P.20210809.1259.004.html. (in Chinese) | |
[9] |
YADVINDER-SINGH, DOBERMANN A, BIJAY-SINGH, BRONSON K F, KHIND C S. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Science Society of America Journal, 2000, 64(4): 1413-1422. doi: 10.2136/sssaj2000.6441413x.
doi: 10.2136/sssaj2000.6441413x |
[10] |
WANG Y, ZHAO X, WANG L, ZHAO P H, ZHU W B, WANG S Q. Phosphorus fertilization to the wheat-growing season only in a rice-wheat rotation in the Taihu Lake region of China. Field Crops Research, 2016, 198: 32-39. doi: 10.1016/j.fcr.2016.08.025.
doi: 10.1016/j.fcr.2016.08.025 |
[11] |
陈浩, 汪玉, 袁佳慧, 朱文彬, 王慎强. 太湖稻麦轮作区减施磷肥对土壤供磷和小麦吸收磷的影响. 农业环境科学学报, 2018, 37(4): 741-746. doi: 10.11654/jaes.2017-1551.
doi: 10.11654/jaes.2017-1551 |
CHEN H, WANG Y, YUAN J H, ZHU W B, WANG S Q. The effect of phosphorus-reduction on soil phosphorus supply and wheat phosphorus uptake in a rice-wheat rotation system in the Taihu Lake Region. Journal of Agro-Environment Science, 2018, 37(4): 741-746. doi: 10.11654/jaes.2017-1551. (in Chinese)
doi: 10.11654/jaes.2017-1551 |
|
[12] |
张阳阳, 张淑利, 谢迎新, 康国章, 陈波, 马冬云, 王晨阳, 郭天财. 沿黄淮稻麦轮作区农田土壤磷库现状及减量施磷农学效应初探. 河南农业科学, 2021, 50(3): 67-73. doi: 10.15933/j.cnki.1004-3268.2021.03.009.
doi: 10.15933/j.cnki.1004-3268.2021.03.009 |
ZHANG Y Y, ZHANG S L, XIE Y X, KANG G Z, CHEN B, MA D Y, WANG C Y, GUO T C. Phosphorus pool and agronomic effects of phosphorus fertilizer reduction in rice-wheat rotation field along the Yellow River and Huai River of China. Journal of Henan Agricultural Sciences, 2021, 50(3): 67-73. doi: 10.15933/j.cnki.1004-3268.2021.03.009. (in Chinese)
doi: 10.15933/j.cnki.1004-3268.2021.03.009 |
|
[13] |
毛凤梧, 赵会杰, 段藏禄. 潮土麦田施磷对小麦品质的影响初探. 河南农业大学学报, 2001, 35(4): 400-402. doi: 10.16445/j.cnki.1000-2340.2001.04.027.
doi: 10.16445/j.cnki.1000-2340.2001.04.027 |
MAO F W, ZHAO H J, DUAN C L. A primary study of the effect of phosphorus fertilizer application on the wheat quality on the alluvial soil. Journal of Henan Agricultural University, 2001, 35(4): 400-402. doi: 10.16445/j.cnki.1000-2340.2001.04.027. (in Chinese)
doi: 10.16445/j.cnki.1000-2340.2001.04.027 |
|
[14] |
ZHU X K, LI C Y, JIANG Z Q, HUANG L L, FENG C N, GUO W S, PENG Y X. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat. Journal of Integrative Agriculture, 2012, 11(7): 1103-1110. doi: 10.1016/S2095-3119(12)60103-8.
doi: 10.1016/S2095-3119(12)60103-8 |
[15] |
王苏影, 潘晓华, 吴建富, 石庆华. 施磷量对双季早、晚稻产量及稻米品质的影响. 中国土壤与肥料, 2011(2): 39-43. doi: 10.3969/j.issn.1673-6257.2011.02.007.
doi: 10.3969/j.issn.1673-6257.2011.02.007 |
WANG S Y, PAN X H, WU J F, SHI Q H. Effects of amount P-applied on yield and rice quality of double-cropping rice. Soils and Fertilizers Sciences in China, 2011(2): 39-43. doi: 10.3969/j.issn.1673-6257.2011.02.007. (in Chinese)
doi: 10.3969/j.issn.1673-6257.2011.02.007 |
|
[16] |
王鹏, 张定一, 王姣爱, 裴雪霞. 氮、磷、钾肥对强筋小麦临优145产量及品质的影响. 山西农业科学, 2006, 34(3): 50-52. doi: 10.3969/j.issn.1002-2481.2006.03.017.
doi: 10.3969/j.issn.1002-2481.2006.03.017 |
WANG P, ZHANG D Y, WANG J A, PEI X X. The effect of the nitrogen, phosphorus, potassium fertilizer application on the yield and quality of high gluten wheat Linyou 145. Journal of Shanxi Agricultural Sciences, 2006, 34(3): 50-52. doi: 10.3969/j.issn.1002-2481.2006.03.017. (in Chinese)
doi: 10.3969/j.issn.1002-2481.2006.03.017 |
|
[17] |
龚金龙, 张洪程, 李杰, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 李炳维, 沙安勤, 周有炎, 罗学超, 朱镇. 施磷量对超级稻南粳44产量和品质的影响. 中国水稻科学, 2011, 25(4): 447-451. doi: 10.3969/j.issn.1001-7216.2011.04.017.
doi: 10.3969/j.issn.1001-7216.2011.04.017 |
GONG J L, ZHANG H C, LI J, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y, LI D J, LI B W, SHA A Q, ZHOU Y Y, LUO X C, ZHU Z. Effects of phosphorus levels on grain yield and quality of super rice Nanjing 44. Chinese Journal of Rice Science, 2011, 25(4): 447-451. doi: 10.3969/j.issn.1001-7216.2011.04.017. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.04.017 |
|
[18] |
姜宗庆, 封超年, 黄联联, 郭文善, 朱新开, 彭永欣. 施磷量对不同类型专用小麦产量和品质的调控效应. 麦类作物学报, 2006, 26(5): 113-116. doi: 10.3969/j.issn.1009-1041.2006.05.025.
doi: 10.3969/j.issn.1009-1041.2006.05.025 |
JIANG Z Q, FENG C N, HUANG L L, GUO W S, ZHU X K, PENG Y X. Effect of phosphorus application on grain yield and quality of wheat for different end uses. Journal of Triticeae Crops, 2006, 26(5): 113-116. doi: 10.3969/j.issn.1009-1041.2006.05.025. (in Chinese)
doi: 10.3969/j.issn.1009-1041.2006.05.025 |
|
[19] | 柳伟伟. 增施磷肥和氮肥后移对四川丘陵旱地中强筋小麦籽粒产量和品质的影响[D]. 雅安: 四川农业大学, 2019. |
LIU W W. Effects of phosphorus fertilization and nitrogen fertilization postpone management on grain yield and quality of medium gluten wheat and medium-strong gluten wheat in hilly of Sichuan Province[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese) | |
[20] |
LI B Y, ZHOU D M, CANG L, ZHANG H L, FAN X H, QIN S W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil and Tillage Research, 2007, 96(1/2): 166-173. doi: 10.1016/j.still.2007.05.005.
doi: 10.1016/j.still.2007.05.005 |
[21] | 昝亚玲. 氮磷对旱地冬小麦产量、养分利用及籽粒矿质营养品质的影响[D]. 杨凌: 西北农林科技大学, 2012. |
ZAN Y L. Effect of nitrogen and phosphorus fertilizer rate on yield, nutrient utilization and grain mineral nutrient quality of wheat in dryland[D]. Yangling: Northwest A & F University, 2012. (in Chinese) | |
[22] |
郝虎林, 杨肖娥, 冯英, 吴春勇. 供磷水平对铁、锰、铜、锌在稻株中分布和糙米品质的影响. 植物营养与肥料学报, 2009, 15(6): 1350-1356. doi: 10.3321/j.issn:1008-505X.2009.06.015.
doi: 10.3321/j.issn:1008-505X.2009.06.015 |
HAO H L, YANG X E, FENG Y, WU C Y. Effects of P fertilizer level on distribution of Fe, Mn, Cu and Zn and brown rice qualities in rice(Oryza sativa L.). Plant Nutrition and Fertilizer Science, 2009, 15(6): 1350-1356. doi: 10.3321/j.issn:1008-505X.2009.06.015. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2009.06.015 |
|
[23] |
LUO L C, HUI X L, WANG Z H, ZHANG X, XIE Y H, GAO Z Q, CHAI S X, LU Q L, LI T L, SUN M, CHANG L, BAI Y L, MALHI S S. Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield, protein content and its components in semiarid areas of China. Field Crops Research, 2019, 240: 86-94. doi: 10.1016/j.fcr.2019.06.002.
doi: 10.1016/j.fcr.2019.06.002 |
[24] |
ZHANG X X, SHI Z Q, JIANG D, HÖGY P, FANGMEIER A. Independent and combined effects of elevated CO2 and post-anthesis heat stress on protein quantity and quality in spring wheat grains. Food Chemistry, 2019, 277: 524-530. doi: 10.1016/j.foodchem.2018.11.010.
doi: 10.1016/j.foodchem.2018.11.010 |
[25] |
ZHANG Y Q, SHI R L, REZAUL K M, ZHANG F S, ZOU C Q. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. Journal of Agricultural and Food Chemistry, 2010, 58(23): 12268-12274. doi: 10.1021/jf103039k.
doi: 10.1021/jf103039k pmid: 21073194 |
[26] |
黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53(23): 4813-4834. doi: 10.3864/j.issn.0578-1752.2020.23.009.
doi: 10.3864/j.issn.0578-1752.2020.23.009 |
HUANG Q N, DANG H Y, HUANG T M, HOU S B, WANG Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(23): 4813-4834. doi: 10.3864/j.issn.0578-1752.2020.23.009. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.23.009 |
|
[27] | 张锦滨, 王晓云, 孟圆, 孙玉香, 马洪波. 不同磷肥用量对水稻产量效益、磷肥利用率及土壤养分的影响. 中国农学通报, 2021, 37(32): 96-101. |
ZHANG J B, WANG X Y, MENG Y, SUN Y X, MA H B. Effects of different amounts of phosphate fertilizer on rice yield, fertilizer utilization and soil nutrients. Chinese Agricultural Science Bulletin, 2021, 37(32): 96-101. (in Chinese) | |
[28] |
王桂苓, 马友华, 孙兴旺, 宋法龙, 张丽娟, 徐宏军, 肖圣辉. 巢湖流域麦稻轮作农田径流氮磷流失研究. 水土保持学报, 2010, 24(2): 6-10, 29. doi: 10.13870/j.cnki.stbcxb.2010.02.010.
doi: 10.13870/j.cnki.stbcxb.2010.02.010 |
WANG G L, MA Y H, SUN X W, SONG F L, ZHANG L J, XU H J, XIAO S H. Study of nitrogen and phosphorus runoff in wheat-rice rotation farmland in Chao Lake Basin. Journal of Soil and Water Conservation, 2010, 24(2): 6-10, 29. doi: 10.13870/j.cnki.stbcxb.2010.02.010. (in Chinese)
doi: 10.13870/j.cnki.stbcxb.2010.02.010 |
|
[29] |
马清霞, 王朝辉, 惠晓丽, 张翔, 张悦悦, 侯赛宾, 黄宁, 罗来超, 张世君, 党海燕. 基于产量和养分含量的旱地小麦施磷量和土壤有效磷优化. 中国农业科学, 2019, 52(1): 73-85. doi: 10.3864/j.issn.0578-1752.2019.01.008.
doi: 10.3864/j.issn.0578-1752.2019.01.008 |
MA Q X, WANG Z H, HUI X L, ZHANG X, ZHANG Y Y, HOU S B, HUANG N, LUO L C, ZHANG S J, DANG H Y. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production. Scientia Agricultura Sinica, 2019, 52(1): 73-85. doi: 10.3864/j.issn.0578-1752.2019.01.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.008 |
|
[30] |
易均, 谢桂先, 刘强, 田昌, 谭力彰, 李旭, 何石福, 石敦杰. 磷肥减施对双季稻生长和产量及磷肥利用率的影响. 湖南农业大学学报(自然科学版), 2016, 42(2): 197-201. doi: 10.13331/j.cnki.jhau.2016.02.017.
doi: 10.13331/j.cnki.jhau.2016.02.017 |
YI J, XIE G X, LIU Q, TIAN C, TAN L Z, LI X, HE S F, SHI D J. Effects of phosphorus fertilizer reduction on the growth, yield and its utilization efficiency of double cropping rice. Journal of Hunan Agricultural University (Natural Sciences), 2016, 42(2): 197-201. doi: 10.13331/j.cnki.jhau.2016.02.017. (in Chinese)
doi: 10.13331/j.cnki.jhau.2016.02.017 |
|
[31] |
付雪蛟, 马畅, 付立东. 施磷量对滨海盐碱稻区水稻生长发育及产量的影响. 东北农业科学, 2022, 47(1): 5-10. doi: 10.16423/j.cnki.1003-8701.2022.01.002.
doi: 10.16423/j.cnki.1003-8701.2022.01.002 |
FU X J, MA C, FU L D. Effects of phosphorus application on growth and yield of rice in coastal salt-alkali rice area. Journal of Northeast Agricultural Sciences, 2022, 47(1): 5-10. doi: 10.16423/j.cnki.1003-8701.2022.01.002. (in Chinese)
doi: 10.16423/j.cnki.1003-8701.2022.01.002 |
|
[32] |
SHEWRY P R. Improving the protein content and composition of cereal grain. Journal of Cereal Science, 2007, 46(3): 239-250. doi: 10.1016/j.jcs.2007.06.006.
doi: 10.1016/j.jcs.2007.06.006 |
[33] |
DUNCAN E G, O’SULLIVAN C A, ROPER M M, BIGGS J S, PEOPLES M B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Research, 2018, 226: 56-65. doi: 10.1016/j.fcr.2018.07.010.
doi: 10.1016/j.fcr.2018.07.010 |
[34] |
ZHANG W, LIU D Y, LIU Y M, CHEN X P, ZOU C Q. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry, 2017, 65(8): 1473-1482. doi: 10.1021/acs.jafc.6b04778.
doi: 10.1021/acs.jafc.6b04778 |
[35] | BOUKHALFA DERAOUI N, HANIFI MEKLICHE L, MEKLICHE A, CHELOUFI H, BABAHANI S. Influence of phosphorus fertilizers application on phosphorus use efficiency and grain protein of winter wheat in alkaline-calcareous soil, southern Algeria. Indian Journal of Agricultural Research, 2020, 54: 51-57. |
[36] | 姜东, 戴廷波, 荆奇, 曹卫星, 赵辉, 周琴, 范雪梅, 陈荣振, 冯国华, 刘东涛, 张爱君. 氮磷钾肥长期配合施用对冬小麦籽粒品质的影响. 中国农业科学, 2004, 37(4): 566-571. |
JIANG D, DAI T B, JING Q, CAO W X, ZHAO H, ZHOU Q, FAN X M, CHEN R Z, FENG G H, LIU D T, ZHANG A J. Effects of long-term combined application of N, P and K fertilizer on grain quality in winter wheat. Scientia Agricultura Sinica, 2004, 37(4): 566-571. (in Chinese) | |
[37] |
MAEOKA R E, SADRAS V O, CIAMPITTI I A, DIAZ D R, FRITZ A K, LOLLATO R P. Changes in the phenotype of winter wheat varieties released between 1920 and 2016 in response to in-furrow fertilizer: biomass allocation, yield, and grain protein concentration. Frontiers in Plant Science, 2020, 10: 1786. doi: 10.3389/fpls.2019.01786.
doi: 10.3389/fpls.2019.01786 |
[38] |
王旭东, 于振文, 石玉, 王小燕. 磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响. 作物学报, 2006, 32(3): 339-344. doi: 10.3321/j.issn:0496-3490.2006.03.004.
doi: 10.3321/j.issn:0496-3490.2006.03.004 |
WANG X D, YU Z W, SHI Y, WANG X Y. Effects of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein contents in grains of wheat. Acta Agronomica Sinica, 2006, 32(3): 339-344. doi: 10.3321/j.issn:0496-3490.2006.03.004. (in Chinese)
doi: 10.3321/j.issn:0496-3490.2006.03.004 |
|
[39] |
王平, 尹燕枰, 付国占, 郭营, 蔡瑞国, 梁太波, 耿庆辉, 邬云海, 王振林. 施磷对小麦旗叶氮代谢关键酶活性和子粒蛋白质含量的影响. 植物营养与肥料学报, 2009, 15(1): 24-31. doi: 10.3321/j.issn:1008-505X.2009.01.004.
doi: 10.3321/j.issn:1008-505X.2009.01.004 |
WANG P, YIN Y P, FU G Z, GUO Y, CAI R G, LIANG T B, GENG Q H, WU Y H, WANG Z L. Effect of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein content of wheat grains. Plant Nutrition and Fertilizer Science, 2009, 15(1): 24-31. doi: 10.3321/j.issn:1008-505X.2009.01.004. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2009.01.004 |
|
[40] |
王伟妮, 鲁剑巍, 何予卿, 李小坤, 李慧. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响. 中国水稻科学, 2011, 25(6): 645-653. doi: 10.3969/j.issn.1001-7216.2011.06.012.
doi: 10.3969/j.issn.1001-7216.2011.06.012 |
WANG W N, LU J W, HE Y Q, LI X K, LI H. Effects of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice. Chinese Journal of Rice Science, 2011, 25(6): 645-653. doi: 10.3969/j.issn.1001-7216.2011.06.012. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.06.012 |
|
[41] |
刘孝成, 赵广才, 石书兵, 常旭虹, 王德梅, 陶志强, 杨玉双, 王美, 郭明明, 亓振, 王雨. 肥水调控对冬小麦产量及籽粒蛋白质组分的影响. 核农学报, 2017, 31(7): 1404-1411. doi: 10.11869/j.issn.100-8551.2017.07.1404.
doi: 10.11869/j.issn.100-8551.2017.07.1404 |
LIU X C, ZHAO G C, SHI S B, CHANG X H, WANG D M, TAO Z Q, YANG Y S, WANG M, GUO M M, QI Z, WANG Y. Effects of fertilizer and water regulation on yield and grain protein components of winter wheat. Journal of Nuclear Agricultural Sciences, 2017, 31(7): 1404-1411. doi: 10.11869/j.issn.100-8551.2017.07.1404. (in Chinese)
doi: 10.11869/j.issn.100-8551.2017.07.1404 |
|
[42] |
CAKMAK I, PFEIFFER W H, MCCLAFFERTY B. Review: Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 2010, 87(1): 10-20. doi: 10.1094/CCHEM-87-1-0010.
doi: 10.1094/CCHEM-87-1-0010 |
[43] |
SU D, ZHOU L J, ZHAO Q, PAN G, CHENG F M. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 2018, 66(7): 1601-1611. doi: 10.1021/acs.jafc.7b04883.
doi: 10.1021/acs.jafc.7b04883 |
[44] |
俄胜哲, 袁继超, 丁志勇, 姚凤娟, 喻小平, 罗付香. 氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响. 中国水稻科学, 2005, 19(5): 434-440. doi: 10.16819/j.1001-7216.2005.05.009.
doi: 10.16819/j.1001-7216.2005.05.009 |
E S Z, YUAN J C, DING Z Y, YAO F J, YU X P, LUO F X. Effect of N, P, K fertilizers on Fe, Zn, Cu, Mn, Ca and Mg contents and yields in rice. Chinese Journal of Rice Science, 2005, 19(5): 434-440. doi: 10.16819/j.1001-7216.2005.05.009. (in Chinese)
doi: 10.16819/j.1001-7216.2005.05.009 |
|
[45] |
SRIVASTAVA P C, BHATT M, PACHAURI S P, TYAGI A K. Effect of zinc application methods on apparent utilization efficiency of zinc and phosphorus fertilizers under basmati rice-wheat rotation. Archives of Agronomy and Soil Science, 2014, 60(1): 33-48. doi: 10.1080/03650340.2013.770145.
doi: 10.1080/03650340.2013.770145 |
[46] |
靳静静, 王朝辉, 戴健, 王森, 高雅洁, 曹寒冰, 于荣. 长期不同氮、磷用量对冬小麦籽粒锌含量的影响. 植物营养与肥料学报, 2014, 20(6): 1358-1367. doi: 10.11674/zwyf.2014.0605.
doi: 10.11674/zwyf.2014.0605 |
JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R. Effects of long-term N and P fertilization With different rates on Zn concentration in grain of winter wheat. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1358-1367. doi: 10.11674/zwyf.2014.0605. (in Chinese)
doi: 10.11674/zwyf.2014.0605 |
|
[47] |
惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静. 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012.
doi: 10.3864/j.issn.0578-1752.2017.16.012 |
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Scientia Agricultura Sinica, 2017, 50(16): 3175-3185. doi: 10.3864/j.issn.0578-1752.2017.16.012. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.16.012 |
|
[48] |
ZHANG W, ZHANG W S, WANG X Z, LIU D Y, ZOU C Q, CHEN X P. Quantitative evaluation of the grain zinc in cereal crops caused by phosphorus fertilization. A meta-analysis. Agronomy for Sustainable Development, 2021, 41(1): 1-12. doi: 10.1007/s13593-020-00661-0.
doi: 10.1007/s13593-020-00661-0 |
[49] |
HUI X L, LUO L C, WANG S, CAO H B, HUANG M, SHI M, MALHI S S, WANG Z H. Critical concentration of available soil phosphorus for grain yield and zinc nutrition of winter wheat in a zinc-deficient calcareous soil. Plant and Soil, 2019, 444(1/2): 315-330. doi: 10.1007/s11104-019-04273-w.
doi: 10.1007/s11104-019-04273-w |
[50] |
买文选, 田霄鸿, 陆欣春, 杨习文. 磷锌肥配施对冬小麦籽粒锌生物有效性的影响. 中国生态农业学报, 2011, 19(6): 1243-1249.
doi: 10.3724/SP.J.1011.2011.01243 |
MAI W X, TIAN X H, LU X C, YANG X W. Effect of Zn and P supply on grain Zn bioavailability in wheat. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1243-1249. (in Chinese)
doi: 10.3724/SP.J.1011.2011.01243 |
|
[51] |
赵婷婷, 王春丽, 赵秀兰. 不同磷肥对水稻根表铁膜及砷镉吸收的影响: 以石灰岩黄壤性水稻土为例. 中国环境科学, 2021, 41(1): 297-306. doi: 10.19674/j.cnki.issn1000-6923.2021.0036.
doi: 10.19674/j.cnki.issn1000-6923.2021.0036 |
ZHAO T T, WANG C L, ZHAO X L. Effects of different phosphate fertilizers on iron plaque amount on root surface and arsenic and cadmium uptake by rice grown in a limestone yellow loamy paddy soil. China Environmental Science, 2021, 41(1): 297-306. doi: 10.19674/j.cnki.issn1000-6923.2021.0036. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.2021.0036 |
|
[52] |
SHEN H, YAN X L, ZHAO M, ZHENG S L, WANG X R. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates. Environmental and Experimental Botany, 2002, 48(1): 1-9. doi: 10.1016/S0098-8472(02)00009-6.
doi: 10.1016/S0098-8472(02)00009-6 |
[53] |
WEN Z H, LI H G, SHEN J B, RENGEL Z. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil, 2017, 416(1/2): 377-389. doi: 10.1007/s11104-017-3214-0.
doi: 10.1007/s11104-017-3214-0 |
[54] |
BOHN L, MEYER A S, RASMUSSEN S K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B, 2008, 9(3): 165-191. doi: 10.1631/jzus.b0710640.
doi: 10.1631/jzus.b0710640 |
[55] |
KUTMAN U B, YILDIZ B, CAKMAK I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science, 2011, 53(1): 118-125. doi: 10.1016/j.jcs.2010.10.006.
doi: 10.1016/j.jcs.2010.10.006 |
[56] |
ZHANG Y Q, DENG Y, CHEN R Y, CUI Z L, CHEN X P, YOST R, ZHANG F S, ZOU C Q. The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc application. Plant and Soil, 2012, 361(1/2): 143-152. doi: 10.1007/s11104-012-1238-z.
doi: 10.1007/s11104-012-1238-z |
[57] |
赵荣芳, 邹春琴, 张福锁. 长期施用磷肥对冬小麦根际磷、锌有效性及其作物磷锌营养的影响. 植物营养与肥料学报, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003.
doi: 10.3321/j.issn:1008-505X.2007.03.003 |
ZHAO R F, ZOU C Q, ZHANG F S. Effects of long-term P fertilization on P and Zn availability in winter wheat rhizoshpere and their nutrition. Plant Nutrition and Fertilizer Science, 2007, 13(3): 368-372. doi: 10.3321/j.issn:1008-505X.2007.03.003. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2007.03.003 |
|
[58] |
FROSSARD E, BUCHER M, MÄCHLER F, MOZAFAR A, HURRELL R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture, 2000, 80(7): 861-879. doi: 10.1002/(sici)1097-0010(20000515)80:7<861:aid-jsfa601>3.0.co;2-p.
doi: 10.1002/(sici)1097-0010(20000515)80:7<861:aid-jsfa601>3.0.co;2-p |
[59] |
RYAN M H, MCINERNEY J K, RECORD I R, ANGUS J F. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of Food and Agriculture, 2008, 88(7): 1208-1216. doi: 10.1002/jsfa.3200.
doi: 10.1002/jsfa.3200 |
[60] |
郝兴顺, 姜雨含, 吴玉红, 田霄鸿, 许伟, 张春辉, 陈浩, 秦宇航, 蒙天竣. 汉中地区籼稻锌、铁、锰营养基因型差异及叶面喷锌对籽粒锌含量的影响. 中国稻米, 2019, 25(4): 74-77. doi: 10.3969/j.issn.1006-8082.2019.04.019.
doi: 10.3969/j.issn.1006-8082.2019.04.019 |
HAO X S, JIANG Y H, WU Y H, TIAN X H, XU W, ZHANG C H, CHEN H, QIN Y H, MENG T J. Genotypic difference in zinc, iron and manganese in indica rice and the effects of foliar application zinc fertilizer on zinc concentration of rice in Hanzhong area. China Rice, 2019, 25(4): 74-77. doi: 10.3969/j.issn.1006-8082.2019.04.019. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2019.04.019 |
|
[61] |
ROSE T J, PARIASCA-TANAKA J, ROSE M T, FUKUTA Y, WISSUWA M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Research, 2010, 119(1): 154-160. doi: 10.1016/j.fcr.2010.07.004.
doi: 10.1016/j.fcr.2010.07.004 |
[1] | 李雅菲, 师江澜, 吴天琪, 王少霞, 李雨诺, 屈春燕, 刘聪慧, 宁鹏, 田霄鸿. 锌与吡虫啉配合喷施对小麦籽粒富锌效果及蛋白质组分的影响[J]. 中国农业科学, 2022, 55(3): 514-528. |
[2] | 任嘉欣,刘京,陈轩敬,张跃强,张勇,王洁,石孝均. 长期施肥紫色土有效磷变化及其对稻麦轮作产量的影响[J]. 中国农业科学, 2021, 54(21): 4601-4610. |
[3] | 张方方,马宁博,岳善超,李世清. 基于不同方法的汉中盆地稻麦轮作土壤供氮能力评价[J]. 中国农业科学, 2020, 53(19): 3996-4009. |
[4] | 韩亚飞,汪学德,郑永战,梅鸿献,魏安池,刘艳阳. 豫芝11号种子发育过程中蛋白质及其组分的变化规律[J]. 中国农业科学, 2018, 51(4): 652-661. |
[5] | 王从,李舒清,刘树伟,邹建文. 大气CO2浓度和温度升高对稻麦轮作生态系统N2O排放的影响[J]. 中国农业科学, 2018, 51(13): 2535-2550. |
[6] | 张维乐,戴志刚,任涛,周先竹,王忠良,李小坤,丛日环. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响[J]. 中国农业科学, 2016, 49(7): 1254-1266. |
[7] | 赵亚南,柴冠群,张珍珍,谢 军,李丹萍,张跃强,石孝均. 稻麦轮作下紫色土有机碳活性及其对长期不同施肥的响应[J]. 中国农业科学, 2016, 49(22): 4398-4407. |
[8] | 蒋敏, 沈明星, 施林林, 沈新平, 戴其根. 长期定位施肥对稻麦轮作农田土壤杂草种子库的影响[J]. 中国农业科学, 2013, 46(3): 555-563. |
[9] | 施林林, 沈明星, 蒋敏, 陆长婴, 王海侯, 吴彤东, 周新伟, 沈新平. 长期不同施肥方式对稻麦轮作田杂草群落的影响[J]. 中国农业科学, 2013, 46(2): 310-316. |
[10] | 王进进, 白玲玉, 曾希柏, 孙媛媛. 薄膜扩散梯度技术评价土壤砷生物有效性研究[J]. 中国农业科学, 2012, 45(4): 697-705. |
[11] | 鲍雪莲, 李琪, 梁文举, 朱建国. 大气CO2浓度升高和氮肥管理对稻麦轮作系统土壤线虫群落组成的影响[J]. 中国农业科学, 2011, 44(22): 4627-4635. |
[12] | 石晓燕,朱 艳,汤 亮,曹卫星 . 小麦籽粒蛋白质组分含量的动态模拟研究[J]. 中国农业科学, 2009, 42(7): 2326-2331 . |
[13] | . 灌水时期和灌水量对小麦耗水特性、籽粒产量及蛋白质组分含量的影响[J]. 中国农业科学, 2009, 42(4): 1306-1315 . |
[14] | 付国占,严美玲,蔡瑞国,贾秀领,田 雷,曹鸿鸣,王振林. 磷氮配施对小麦籽粒蛋白质组分含量和面团特性的影响[J]. 中国农业科学, 2008, 41(6): 1640-1648 . |
[15] | 王月福,于振文,李尚霞,余松烈. 施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J]. 中国农业科学, 2002, 35(9): 1071-1078 . |
|