中国农业科学 ›› 2022, Vol. 55 ›› Issue (12): 2413-2424.doi: 10.3864/j.issn.0578-1752.2022.12.012
边兰星1(),梁丽琨1,颜坤2,3(
),宿红艳3,李丽霞1,董小燕2,梅惠敏4
收稿日期:
2021-09-29
接受日期:
2021-12-14
出版日期:
2022-06-16
发布日期:
2022-06-23
通讯作者:
颜坤
作者简介:
边兰星,E-mail: 基金资助:
BIAN LanXing1(),LIANG LiKun1,YAN Kun2,3(
),SU HongYan3,LI LiXia1,DONG XiaoYan2,MEI HuiMin4
Received:
2021-09-29
Accepted:
2021-12-14
Online:
2022-06-16
Published:
2022-06-23
Contact:
Kun YAN
摘要:
【目的】 研究木霉对枸杞(Lycium chinense)耐盐能力的影响,从离子平衡、氧化胁迫和光系统II(PSII)性能等方面揭示耐盐机理。【方法】 以枸杞为试验材料,施加木霉菌剂于根周围,浇灌NaCl溶液(300 mmol·L-1)进行盐处理,比较盐胁迫下施加和未施加菌剂植株生物量、K+/Na+、根系钾钠离子吸收转运、叶片氧化损伤以及PSII性能的差异。【结果】 盐胁迫下,施加菌剂的植株生物量降幅较小,说明木霉能够提高枸杞耐盐能力,减少对生长的抑制。木霉缓解盐诱导的光合速率与PSII光化学效率的下降,抑制PSII激发压上升,有利于防御PSII光抑制。盐胁迫下施加菌剂的植株PSII最大光化学效率的降幅和PSII反应中心蛋白损失相对较少,证实了木霉缓解PSII光抑制,保护了PSII反应中心。与光抑制结果一致,盐胁迫下施加菌剂植株叶片膜脂过氧化程度和H2O2含量较低,氧化损伤较轻。盐胁迫下,施加菌剂植株光合电子传递到QA以下电子受体效率的降幅较小,叶绿素快速荧光诱导动力学(OJIP)曲线的J点也未明显上升,表明木霉保护了PSII受体侧电子传递体。木霉对PSII供体侧放氧复合体也起到保护作用,因为施加菌剂抑制了盐胁迫下K点相对可变荧光的显著上升以及避免了OJIP曲线中K点的出现。因此,木霉对PSII各组分都起到了保护作用,缓解了盐胁迫下PSII性能指数的下降,提高了PSII整体稳定性。盐胁迫下,施加菌剂的植株根和叶Na+含量较低,但K+含量较高,说明木霉通过减少根和叶中Na+积累及K+损失,缓解K+/Na+下降,维持离子平衡。木霉增强盐胁迫下根系Na+外排,保障根系K+吸收和向地上部转运,是维护枸杞离子平衡的关键机制。【结论】 木霉调控盐胁迫下根系钠钾离子吸收转运,维持离子平衡,减轻PSII氧化胁迫,增强枸杞耐盐能力,缓解对其生长的抑制。
边兰星,梁丽琨,颜坤,宿红艳,李丽霞,董小燕,梅惠敏. 木霉对盐胁迫下枸杞根与叶内离子平衡和光系统II的影响[J]. 中国农业科学, 2022, 55(12): 2413-2424.
BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress[J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[1] |
FENG X H, GUO K, YANG C, LI J S, CHEN H Y, LIU X J. Growth and fruit production of tomato grafted onto wolfberry (Lycium chinense) rootstock in saline soil. Scientia Horticulturae, 2019, 255: 298-305.
doi: 10.1016/j.scienta.2019.05.028 |
[2] |
LOPEZ-BUCIO J, PELAGIO-FLORES R, HERRERA-ESTRELLA A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae, 2015, 196: 109-123.
doi: 10.1016/j.scienta.2015.08.043 |
[3] | SAZZAD HOSSAIN M, KARL-JOSEF D. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science, 2016, 7: 548. |
[4] |
ZHU J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6(5): 441-445. doi: 10.1016/s1369-5266(03)00085-2.
doi: 10.1016/s1369-5266(03)00085-2 |
[5] |
ZHU J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273. doi: 10.1146/annurev.arplant.53.091401.143329.
doi: 10.1146/annurev.arplant.53.091401.143329 |
[6] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. doi: 10.1146/annurev.arplant.59.032607.092911.
doi: 10.1146/annurev.arplant.59.032607.092911 |
[7] |
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. doi: 10.1016/j.plaphy.2010.08.016.
doi: 10.1016/j.plaphy.2010.08.016 |
[8] |
CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 2008, 103(4): 551-560. doi: 10.1093/aob/mcn125.
doi: 10.1093/aob/mcn125 |
[9] |
CHINNUSAMY V, JAGENDORF A, ZHU J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45: 437-448.
doi: 10.2135/cropsci2005.0437 |
[10] |
ZHU J K. Plant salt tolerance. Trends in Plant Science, 2001, 6: 66-71.
doi: 10.1016/S1360-1385(00)01838-0 |
[11] |
SUN J, CHEN S L, DAI S X, WANG R G, LI N Y, SHEN X, ZHOU X Y, LU C F, ZHENG X J, HU Z M, ZHANG Z K, SONG J, XU Y. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiology, 2008, 149(2): 1141-1153. doi: 10.1104/pp.108.129494.
doi: 10.1104/pp.108.129494 |
[12] |
YAN F Y, WEI H M, LI W W, LIU Z H, TANG S, CHEN L, DING C Q, JIANG Y, DING Y F, LI G H. Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicology and Environmental Safety, 2020, 206: 111358. doi: 10.1016/j.ecoenv.2020.111358.
doi: 10.1016/j.ecoenv.2020.111358 |
[13] |
SUN J, DAI S X, WANG R G, CHEN S L, LI N Y, ZHOU X Y, LU C F, SHEN X, ZHENG X J, HU Z M, ZHANG Z K, SONG J, XU Y. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiology, 2009, 29(9): 1175-1186. doi: 10.1093/treephys/tpp048.
doi: 10.1093/treephys/tpp048 |
[14] |
WU G Q, WANG S M. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant, Soil and Environment, 2012, 58(3): 121-127.
doi: 10.17221/374/2011-PSE |
[15] |
WANG Z M, WANG M Y, LIU L, MENG F J. Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseu-doacacia L.) subjected to salt stress. International Journal of Molecular Sciences, 2013, 14(10): 20299-20325.
doi: 10.3390/ijms141020299 |
[16] | 颜坤, 赵世杰, 徐化凌, 吴从稳, 陈小兵. 盐胁迫对不同倍性金银花光合特性的影响. 中国农业科学, 2015, 48(16): 3275-3286. |
YAN K, ZHAO S J, XU H L, WU C W, CHEN X B. Effects of salt stress on photosynthetic characters in honeysuckle with different ploidies. Scientia Agricultura Sinica, 2015, 48(16): 3275-3286. (in Chinese) | |
[17] |
MURATA N, TAKAHASHI S, NISHIYAMA Y, ALLAKHVERDIEV S I. Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta, 2007, 1767(6): 414-421. doi: 10.1016/j.bbabio.2006.11.019.
doi: 10.1016/j.bbabio.2006.11.019 |
[18] |
LORETO F, CENTRITTO M, CHARTZOULAKIS K. Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environment, 2003, 26: 595-601.
doi: 10.1046/j.1365-3040.2003.00994.x |
[19] |
YANG X H, LIANG Z, WEN X G, LU C M. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Molecular Biology, 2007, 66(1/2): 73-86. doi: 10.1007/s11103-007-9253-9.
doi: 10.1007/s11103-007-9253-9 |
[20] |
TAKAHASHI S, MURATA N. How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 2008, 13(4): 178-182. doi: 10.1016/j.tplants.2008.01.005.
doi: 10.1016/j.tplants.2008.01.005 |
[21] |
CHEN H X, LI W J, AN S Z, GAO H Y. Characterization of PSII photochemistry and thermostability in salt-treated Rumex leaves. Journal of Plant Physiology, 2004, 161(3): 257-264. doi: 10.1078/0176-1617-01231.
doi: 10.1078/0176-1617-01231 |
[22] |
CHEN P, YAN K, SHAO H B, ZHAO S J. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from yellow river delta, China: Photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE, 2013, 8(12): e83227.
doi: 10.1371/journal.pone.0083227 |
[23] |
HUSSAIN S, LURO F, COSTANTINO G, OLLITRAULT P, MORILLON R. Physiological analysis of salt stress behaviour of citrus species and genera: Low chloride accumulation as an indicator of salt tolerance. South African Journal of Botany, 2012, 81: 103-112.
doi: 10.1016/j.sajb.2012.06.004 |
[24] |
KALAJI H M, GOVINDJEE, BOSA K, KOŚCIELNIAK J, ŻUK-GOŁASZEWSKA K. Effects of salt stress on photosystem II efficiency and CO2 assimilation in two Syrian barley landraces. Photosynthesis Research for Food, Fuel and the Future, 2011, 73: 64-72. doi: 10.1007/978-3-642-32034-7_164.
doi: 10.1007/978-3-642-32034-7_164 |
[25] |
TARCHOUNE I, DEGL’INNOCENTI E, KADDOUR R, GUIDI L, LACHAÂL M, NAVARI-IZZO F, OUERGHI Z. Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiologiae Plantarum, 2012, 34(2): 607-615. doi: 10.1007/s11738-011-0861-2.
doi: 10.1007/s11738-011-0861-2 |
[26] |
孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16): 3265-3272. doi: 10.3864/j.issn.0578-1752.2012.16.005.
doi: 10.3864/j.issn.0578-1752.2012.16.005 |
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of Sorghum seedlings. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272. doi: 10.3864/j.issn.0578-1752.2012.16.005. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.16.005 |
|
[27] |
赵莹, 杨克军, 赵长江, 李佐同, 王玉凤, 付健, 郭亮, 李文胜. 外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫. 中国农业科学, 2014, 47(20): 3962-3972. doi: 10.3864/j.issn.0578-1752.2014.20.004.
doi: 10.3864/j.issn.0578-1752.2014.20.004 |
ZHAO Y, YANG K J, ZHAO C J, LI Z T, WANG Y F, FU J, GUO L, LI W S. Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings. Scientia Agricultura Sinica, 2014, 47(20): 3962-3972. doi: 10.3864/j.issn.0578-1752.2014.20.004. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.20.004 |
|
[28] |
BAKER N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59: 89-113. doi: 10.1146/annurev.arplant.59.032607.092759.
doi: 10.1146/annurev.arplant.59.032607.092759 |
[29] |
MATHUR S, JAJOO A, MEHTA P, BHARTI S. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology (Stuttgart, Germany), 2011, 13(1): 1-6. doi: 10.1111/j.1438-8677.2009.00319.x.
doi: 10.1111/j.1438-8677.2009.00319.x. |
[30] |
YAN K, SHAO H B, SHAO C Y, CHEN P, ZHAO S J, BRESTIC M, CHEN X B. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiologiae Plantarum, 2013, 35(10): 2867-2878. doi: 10.1007/s11738-013-1325-7.
doi: 10.1007/s11738-013-1325-7 |
[31] |
ZHAO L, ZHANG Y Q. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. Journal of Integrative Agriculture, 2015, 14(8): 1588-1597.
doi: 10.1016/S2095-3119(14)60966-7 |
[32] |
GUPTA S, SMITH P M C, BOUGHTON B A, RUPASINGHE T W T, NATERA S H A, ROESSNER U. Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance. Journal of Experimental Botany, 2021, 72(20): 7229-7246. doi: 10.1093/jxb/erab335.
doi: 10.1093/jxb/erab335 |
[33] | AHMAD P, HASHEM A, ABD-ALLAH E F, ALQARAWI A A, JOHN R, EGAMBERDIEVA D, GUCEL S. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Frontiers in Plant Science, 2015, 6: 868. |
[34] |
KUMAR K, MANIGUNDAN K, AMARESAN N. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology, 2017, 57(2): 141-150.
doi: 10.1002/jobm.201600369 |
[35] |
MASTOURI F, BJÖRKMAN T, HARMAN G E. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 2010, 100(11): 1213-1221. doi: 10.1094/PHYTO-03-10-0091.
doi: 10.1094/PHYTO-03-10-0091 |
[36] |
QI W Z, ZHAO L. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology, 2013, 53(4): 355-364. doi: 10.1002/jobm.201200031.
doi: 10.1002/jobm.201200031 |
[37] | SOLIMAN M H, ALNUSAIRE T S, ABDELBAKY N F, ALAYAFI A A M, HASANUZZAMAN M, ROWEZAK M M, EL-ESAWI M, ELKELISH A. Trichoderma-induced improvement in growth, photosynthetic pigments, proline and glutathione levels in cucurbita pepo seedlings under salt stress. Phyton-International Journal of Experimental Botany, 2020, 89(3): 473-486. |
[38] |
FU J, XIAO Y, WANG Y F, LIU Z H, YANG K J. Saline-alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment. Scientific Reports, 2021, 11: 11152.
doi: 10.1038/s41598-021-90675-9 |
[39] |
MBARKI S CERDA A, BRESTIC M, MAHENDRA R, ABDELLY C, PASCUAL J A. Vineyard compost supplemented with Trichoderma Harzianum T78 improve saline soil quality. Land Degradation and Development, 2017, 28(3): 1028-1037.
doi: 10.1002/ldr.2554 |
[40] |
CHEN L H, ZHENG J H, SHAO X H, SHEN S S, YU Z H, MAO X Y, CHANG T T. Effects of Trichoderma harzianum T83 on Suaeda salsa L. in coastal saline soil. Ecological Engineering, 2016, 91: 58-64.
doi: 10.1016/j.ecoleng.2016.01.007 |
[41] |
ZHANG F L, WANG Y H, LIU C, CHEN F J, GE H L, TIAN F S, YANG T W, MA K S, ZHANG Y. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety, 2019, 170: 436-445.
doi: 10.1016/j.ecoenv.2018.11.084 |
[42] |
ZHANG S W, GAN Y T, XU B L. Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology, 2019, 19(1): 22. doi: 10.1186/s12870-018-1618-5.
doi: 10.1186/s12870-018-1618-5 |
[43] | OLJIRA A M, HUSSAIN T, WAGHMODE T R, ZHAO H C, SUN H Y, LIU X J, WANG X Z, LIU B B. Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress. Microorganisms, 2020, 10(8): 1565. |
[44] | 颜坤, 赵世杰, 任承钢, 边兰星, 李萌, 陈小兵. 一种棘孢木霉及其应用: CN106754426B[P]. 2020-05-08. |
YAN K, ZHAO S J, REN C G, BIAN L X, LI M, CHEN X B. Trichoderma asperellum and application thereof: CN106754426B[P]. 2020-05-08.. (in Chinese) | |
[45] |
YAN K, BIAN T T, HE W J, HAN G X, LV M X, GUO M Z, LU M. Root abscisic acid contributes to defending photoinibition in Jerusalem Artichoke (Helianthus tuberosus L.) under salt stress. International Journal of Molecular Sciences, 2018, 19: 3934.
doi: 10.3390/ijms19123934 |
[46] |
YAN K, CHEN W, HE X Y, ZHANG G Y, XU S, WANG L L. Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environmental and Experimental Botany, 2010, 69(2): 198-204.
doi: 10.1016/j.envexpbot.2010.03.008 |
[47] |
YAN K, HAN G X, REN C G, ZHAO S J, WU X Q, BIAN T T. Fusarium solani infection depressed photosystem performance by inducing foliage wilting in apple seedlings. Frontiers in Plant Science, 2018, 9: 479. doi: 10.3389/fpls.2018.00479.
doi: 10.3389/fpls.2018.00479 |
[48] | STRASSER R J, TSIMILLI-MICHAEL M, QIANG S, GOLTSEV V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta-Bioenergetics, 2010, 1797: 122. |
[49] | YAN K, WU C W, ZHANG L H, CHEN X B. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Frontiers in Plant Science, 2015, 6: 227. |
[50] |
ZHANG Z S, JIN L Q, LI Y T, TIKKANEN M, LI Q M, AI X Z, GAO H Y. Ultraviolet-B radiation (UV-B) relieves chilling-light- induced PSI photoinhibition and accelerates the recovery of CO2 assimilation in cucumber (Cucumis sativus L.) leaves. Scientific Reports, 2016, 6: 34455. doi: 10.1038/srep34455.
doi: 10.1038/srep34455 |
[51] |
ZHAO N, WANG S J, MA X J, ZHU H P, SA G, SUN J, LI N F, ZHAO C J, ZHAO R, CHEN S L. Extracellular ATP mediates cellular K+/Na+ homeostasis in two contrasting poplar species under NaCl stress. Trees, 2016, 30(3): 825-837. doi: 10.1007/s00468-015-1324-y.
doi: 10.1007/s00468-015-1324-y |
[52] |
FENG X H, AN P, GUO K, LI X G, ZHANG X M. Growth, root compensation and ion distribution in Lycium chinense under heterogeneous salinity stress. Scientia Horticulturae, 2017, 226: 24-32.
doi: 10.1016/j.scienta.2017.08.011 |
[53] |
YAN K, HE W J, BIAN L X, ZHANG Z S, TANG X L, AN M X, LI L X, HAN G X. Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination. BMC Plant Biology, 2020, 20: 155.
doi: 10.1186/s12870-020-02371-x |
[54] |
STRASSER R J, SRIVASTAVA A, GOVINDJEE K S. Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 1995, 61: 32-42.
doi: 10.1111/j.1751-1097.1995.tb09240.x |
[55] | STRASSER R J, SRIVASTAVA A, MICHAEL T S. Analysis of the chlorophyll fluorescence transient//PAPAGEORGIOU G, GOVINDJEE K S. Chlorophyll Fluorescence a Signature of Photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004: 321-362. |
[56] |
APPENROTH K J, STOCKEL J, SRIVASTAVA A, STRASSER R J. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution, 2001, 115: 49-64.
doi: 10.1016/S0269-7491(01)00091-4 |
[57] |
LI J, BAO S Q, ZHANG Y H, MA X J, MISHRA-KNYRIM M, SUN J, SA G, SHEN X, POLLE A, CHEN S L. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus × canescens under sodium chloride stress. Plant Physiology, 2012, 159(4): 1771-1786. doi: 10.1104/pp.112.195370.
doi: 10.1104/pp.112.195370 |
[58] |
DIMITROVA V L, PAUNOV M M, GOLTSEV V, GENEVA M P, MARKOVSKA Y K. Effect of soil salinity on growth, metal distribution and photosynthetic performance of two Lycium species. Photosynthetica, 2019, 57(1): 32-39.
doi: 10.32615/ps.2019.006 |
[59] |
GUO Y, YU Q, FENG X H, XIE Z X, LIU X J. Effects of partial defoliation on the growth, ion relations and photosynthesis of Lycium chinense Mill. under salt stress. Archives of Biological Sciences, 2015, 67(4): 1185-1194.
doi: 10.2298/ABS150211094G |
[60] |
TANG X Q, ZHANG H L, SHABALA S, LI H Y, YANG X Y, ZHANG H X. Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall. Tree Physiology, 2021, 41(7): 1264-1277. doi: 10.1093/treephys/tpaa174.
doi: 10.1093/treephys/tpaa174 |
[61] |
ZHAO K F, FAN H, ZHOU S, SONG J. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Science, 2003, 165: 837-844.
doi: 10.1016/S0168-9452(03)00282-6 |
[1] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
[2] | 王辉,高玉录,于梦,杜远鹏,孙永江,翟衡. 根灌乙酸及葡萄酒对海水胁迫下葡萄光抑制的影响[J]. 中国农业科学, 2018, 51(21): 4210-4218. |
[3] | 严莉,王翠平,陈建伟,乔改霞,李健. 基于转录组信息的黑果枸杞MYB转录因子家族分析[J]. 中国农业科学, 2017, 50(20): 3991-4002. |
[4] | 赵建华,述小英,李浩霞,郑慧文,尹跃,安巍,王亚军. 不同果色枸杞鲜果品质性状分析及综合评价[J]. 中国农业科学, 2017, 50(12): 2338-2348. |
[5] | 周振翔,李志康,陈 颖,王志琴,杨建昌,顾骏飞. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响[J]. 中国农业科学, 2016, 49(19): 3709-3720. |
[6] | 闫亚美,戴国礼,冉林武,罗青,李晓莺,秦垦,巫鹏举,曾晓雄,曹有龙. 不同产地野生黑果枸杞资源果实多酚组成分析[J]. 中国农业科学, 2014, 47(22): 4540-4550. |
[7] | 陈赛娟, 刘亚娟, 王圆圆, 陈丹丹, 刘涛, 谷子林. 枸杞多糖对泌乳母兔生产性能及血清生化指标的影响[J]. 中国农业科学, 2013, 46(10): 2168-2174. |
[8] | 张子山,张立涛,高辉远,贾裕娇,部建雯,孟庆伟 . 不同光强与低温交叉胁迫下黄瓜PSⅠ与PSⅡ的光抑制研究[J]. 中国农业科学, 2009, 42(12): 4288-4293 . |
[9] | 马文平,李 赫,叶立勤,陈 敏,张 杉. 不同采收期枸杞干燥过程中主要类胡萝卜素的变化[J]. 中国农业科学, 2007, 40(7): 1492-1497 . |
[10] | 颜 坤,陈 娜,曲妍妍,郭 峰,孟庆伟,赵世杰. 高温胁迫下转甜椒正义甘油-3-磷酸酰基转移酶基因(GPAT)烟草缓解PSⅡ光抑制[J]. 中国农业科学, 2007, 40(11): 2468-2473 . |
[11] | 李赫,陈敏,马文平,王静钰. 不同成熟期枸杞中类胡萝卜素含量的变化规律[J]. 中国农业科学, 2006, 39(03): 599-605 . |
[12] | 姜国强,郭晋隆,孟庆伟,陈由强,王洪新,胡志昂,匡廷云. 超级杂交水稻两优培九光抑制差异表达基因的遗传来源[J]. 中国农业科学, 2005, 38(01): 33-37 . |
[13] | @张晓煜$宁夏气象防灾减灾重点实验室!银川750002 @刘静$宁夏气象防灾减灾重点实验室!银川750002 @王连喜$宁夏气象防灾减灾重点实验室!银川750002 . 枸杞品质综合评价体系构建[J]. 中国农业科学, 2004, 37(03): 416-416 . |
[14] | 满为群,杜维广,张桂茹,栾晓燕,戈巧英,郝乃斌,陈怡. 高光效大豆品种光合作用的日变化[J]. 中国农业科学, 2002, 35(7): 860-862 . |
[15] | 焦德茂,李霞,黄雪清,季本华. 不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J]. 中国农业科学, 2002, 35(5): 487-492 . |
|