中国农业科学 ›› 2021, Vol. 54 ›› Issue (13): 2789-2803.doi: 10.3864/j.issn.0578-1752.2021.13.009
董建新1,2(),宋文静2,丛萍1,2,李玉义1,逄焕成1(
),郑学博2,王毅3,王婧1,况帅2,徐艳丽2
收稿日期:
2020-08-20
修回日期:
2020-09-28
出版日期:
2021-07-01
发布日期:
2021-07-12
通讯作者:
逄焕成
作者简介:
董建新,E-mail: 基金资助:
DONG JianXin1,2(),SONG WenJing2,CONG Ping1,2,LI YuYi1,PANG HuanCheng1(
),ZHENG XueBo2,WANG Yi3,WANG Jing1,KUANG Shuai2,XU YanLi2
Received:
2020-08-20
Revised:
2020-09-28
Online:
2021-07-01
Published:
2021-07-12
Contact:
HuanCheng PANG
摘要:
【目的】针对黄淮烟区植烟田由于化肥投入较高、耕作频繁造成的土壤板结、通透性降低、水稳性团聚体数量下降等土壤物理性质恶化的问题,探讨通过秸秆颗粒还田与耕作方式改善土壤物理性状的可行性。【方法】采用3年田间定位试验,以旋耕+不施秸秆颗粒(RG0)为对照,设置3种秸秆颗粒用量(G1:2 250 kg·hm-2、G2:4 500 kg·hm-2、G3:6 750 kg·hm-2)与2种耕作方式(旋耕:R、深翻:T)的交互处理,分析不同处理对土壤容重、田间持水量、土壤孔隙度、土壤团聚体稳定性的影响。【结果】(1)与RG0相比,3年间RG处理易显著降低0—20 cm土层土壤容重,降幅6.7%—16.5%,而TG处理易显著降低20—40 cm土层土壤容重,降幅3.0%—9.8%,秸秆颗粒高量还田降低比率最高。(2)RG处理提升0—20 cm土层田间持水量的效果显著,其中RG3较RG0提升14.9%(2017年);增加秸秆颗粒用量提升20—40 cm土层田间持水量显著,其中RG3较RG0提升18.0%(2018年)。(3)RG3与TG3处理显著提高0—20 cm与20—40 cm土层土壤总孔隙度,最高达17.9%与14.6%(2017年),但仅RG2与RG3处理显著提高20—40 cm土层土壤毛管孔隙度。(4)RG处理在还田后期对0—20 cm土层土壤团聚体稳定性的提升作用显著;>2 mm、小鱼0.106 mm、0.5—1 mm、0.106—0.25 mm与1—2 mm粒级团聚体是影响0—20 cm土层土壤物理性状的主要因子(Exp>66%),而0.5—1 mm与0.106—0.25 mm粒级团聚体是影响20—40 cm土层土壤物理性状的主要因子(Exp>48%)。【结论】秸秆颗粒用量6 750 kg·hm-2配合旋耕处理可同时降低0—20和20—40 cm土层的土壤容重,提升持水性能与土壤团聚体稳定性,且聚类分析也表明该处理促使土壤物理特性居于一类水平,是能有效改善当地烟田土壤物理结构的可行措施。
董建新,宋文静,丛萍,李玉义,逄焕成,郑学博,王毅,王婧,况帅,徐艳丽. 旋耕配合秸秆颗粒还田对土壤物理特性的影响[J]. 中国农业科学, 2021, 54(13): 2789-2803.
DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw[J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
表1
供试土壤基础理化性状"
土层 Soil layer (cm) | pH | 有机质 Soil organic matter (g·kg-1) | 容重 Soil bulk density (g·cm-3) | 田间持水量 Field water capacity (%) | 总孔隙度 Soil total porosity (%) | 毛管孔隙度 Soil capillary porosity (%) | >0.25 mm水稳性团聚体 >0.25 mm water stable aggregate (%) |
---|---|---|---|---|---|---|---|
0-20 | 7.89 | 14.88 | 1.34 | 20.89 | 48.91 | 27.15 | 61.98 |
20-40 | 8.03 | 13.79 | 1.59 | 17.25 | 36.28 | 29.90 | 70.59 |
表2
试验设计表"
编号No. | 试验处理Treatment |
---|---|
RG0 | 旋耕+秸秆不还田Rotary tillage with no straw return |
TG1 | 深翻(35 cm)+ 秸秆颗粒2 250 kg·hm-2Deep ploughing (35 cm) with granulated straw 2 250 kg·hm-2 |
TG2 | 深翻(35 cm)+ 秸秆颗粒4 500 kg·hm-2Deep ploughing (35 cm) with granulated straw 4 500 kg·hm-2 |
TG3 | 深翻(35 cm)+ 秸秆颗粒6 750 kg·hm-2Deep ploughing (35 cm) with granulated straw 6 750 kg·hm-2 |
RG1 | 旋耕(15 cm)+ 秸秆颗粒2 250 kg·hm-2Rotary tillage (15 cm) with granulated straw 2 250 kg·hm-2 |
RG2 | 旋耕(15 cm)+秸秆颗粒4 500 kg·hm-2Rotary tillage (15 cm) with granulated straw 4 500 kg·hm-2 |
RG3 | 旋耕(15 cm)+秸秆颗粒6 750 kg·hm-2Rotary tillage (15 cm) with granulated straw 6 750 kg·hm-2 |
表3
2016—2018年不同处理下植烟土壤容重及容重降低比率"
土层 Soil layer (cm) | 处理 Treatment | 2016 | 2017 | 2018 | |||
---|---|---|---|---|---|---|---|
土壤容重 Bulk density (g·cm-3) | 土壤容重降低比率 Bulk density decrease (%) | 土壤容重 Bulk density (g·cm-3) | 土壤容重降低比率 Bulk density decrease (%) | 土壤容重 Bulk density (g·cm-3) | 土壤容重降低比率 Bulk density decrease (%) | ||
0-20 | RG0 | 1.38±0.05a | — | 1.38±0.02a | — | 1.43±0.03a | — |
TG1 | 1.39±0.07a | -1.01 | 1.36±0.02a | 1.14 | 1.33±0.02bc | 6.70 | |
TG2 | 1.44±0.02a | -4.19 | 1.25±0.01b | 9.78 | 1.31±0.05bc | 8.07 | |
TG3 | 1.43±0.01a | -3.81 | 1.26±0.02b | 8.48 | 1.32±0.01bc | 7.87 | |
RG1 | 1.34±0.02a | 2.56 | 1.23±0.01b | 11.23 | 1.31±0.01bc | 8.70 | |
RG2 | 1.34±0.01a | 2.55 | 1.22±0.03b | 11.30 | 1.35±0.01b | 5.60 | |
RG3 | 1.35±0.02a | 2.28 | 1.15±0.02c | 16.47 | 1.27±0.01c | 11.35 | |
20-40 | RG0 | 1.67±0.02a | — | 1.65±0.01a | — | 1.64±0.01a | — |
TG1 | 1.57±0.03c | 6.05 | 1.68±0.02a | -2.01 | 1.50±0.02d | 8.67 | |
TG2 | 1.61±0.02bc | 3.44 | 1.55±0.01b | 6.11 | 1.50±0.01d | 8.29 | |
TG3 | 1.58±0.01c | 5.48 | 1.51±0.01c | 8.56 | 1.48±0.01d | 9.84 | |
RG1 | 1.62±0.01bc | 3.03 | 1.56±0.01b | 5.64 | 1.58±0.01b | 3.47 | |
RG2 | 1.64±0.02ab | 1.80 | 1.55±0.01b | 5.90 | 1.57±0.01bc | 4.49 | |
RG3 | 1.61±0.01bc | 3.59 | 1.54±0.01bc | 6.40 | 1.54±0.01c | 5.90 |
表4
双因素方差分析耕作方式与秸秆颗粒用量交互作用对土壤容重的影响"
土层 Soil layer (cm) | 年份 Year | 耕作方式 Tillage management | 秸秆用量 Straw amount | 耕作方式×秸秆用量 Tillage management×Straw amount | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
0-20 | 2016 | 8.08 | 0.0175 | 0.30 | 0.7494 | 0.25 | 0.7817 |
2017 | 49.38 | 小鱼0.0001 | 16.00 | 0.0008 | 7.68 | 0.0095 | |
2018 | 0.52 | 0.4887 | 1.37 | 0.2974 | 1.63 | 0.2438 | |
20-40 | 2016 | 7.47 | 0.0211 | 2.96 | 0.0975 | 0.29 | 0.7571 |
2017 | 6.47 | 0.0292 | 23.99 | 0.0002 | 18.75 | 0.0004 | |
2018 | 46.48 | 小鱼0.0001 | 3.07 | 0.0911 | 0.50 | 0.6232 |
表5
2016—2018年不同处理下植烟土壤田间持水量及其上升比率"
土层 Soil layer (cm) | 处理 Treatment | 2016 | 2017 | 2018 | |||
---|---|---|---|---|---|---|---|
田间持水量 Field water capacity (%) | 田间持水量上升比率 Field water capacity increase (%) | 田间持水量 Field water capacity (%) | 田间持水量上升比率 Field water capacity increase (%) | 田间持水量 Field water capacity (%) | 田间持水量上升比率 Field water capacity increase (%) | ||
0-20 | RG0 | 20.73±0.20c | — | 19.16±0.52cd | — | 19.24±0.30b | — |
TG1 | 21.58±0.64bc | 4.10 | 18.84±0.41d | -1.67 | 20.38±0.45ab | 5.92 | |
TG2 | 21.82±0.28bc | 5.24 | 20.46±0.73bc | 6.77 | 20.67±0.48a | 7.43 | |
TG3 | 21.75±0.25bc | 4.94 | 20.34±0.31bc | 6.16 | 20.50±0.74ab | 6.53 | |
RG1 | 23.14±0.31a | 11.65 | 21.19±0.29ab | 10.62 | 20.37±0.38ab | 5.86 | |
RG2 | 22.24±0.74ab | 7.28 | 20.64±0.29b | 7.72 | 20.39±0.12ab | 5.99 | |
RG3 | 22.72±0.27ab | 9.60 | 22.01±0.40a | 14.86 | 21.52±0.41a | 11.83 | |
20-40 | RG0 | 19.94±0.32c | — | 17.77±1.01bc | — | 17.23±0.53c | — |
TG1 | 20.88±0.19bc | 4.72 | 17.15±0.54c | -3.47 | 19.78±0.55ab | 14.79 | |
TG2 | 21.54±0.42ab | 8.04 | 20.76±1.15a | 16.81 | 19.34±0.27ab | 12.23 | |
TG3 | 21.42±0.08ab | 7.44 | 20.45±0.86a | 15.08 | 19.47±0.35ab | 12.98 | |
RG1 | 21.45±0.47ab | 7.58 | 15.82±0.38c | -10.98 | 18.58±0.82bc | 7.83 | |
RG2 | 20.92±0.56bc | 4.92 | 20.23±0.72ab | 13.82 | 19.63±0.56ab | 13.92 | |
RG3 | 22.28±0.14a | 11.74 | 19.86±1.14ab | 11.75 | 20.33±0.38a | 17.98 |
表6
双因素方差分析耕作方式与秸秆颗粒用量交互作用对田间持水量的影响"
土层 Soil layer (cm) | 年份 Year | 耕作方式 Tillage management | 秸秆用量 Straw amount | 耕作方式×秸秆用量 Tillage management ×Straw amount | |||
---|---|---|---|---|---|---|---|
F | P | F | P | F | P | ||
0-20 | 2016 | 5.85 | 0.0361 | 0.23 | 0.7992 | 0.66 | 0.5399 |
2017 | 16.29 | 0.0024 | 3.71 | 0.0624 | 3.41 | 0.0743 | |
2018 | 0.35 | 0.5650 | 0.86 | 0.4509 | 0.92 | 0.4299 | |
20-40 | 2016 | 0.75 | 0.4071 | 1.98 | 0.1887 | 2.14 | 0.1690 |
2017 | 2.02 | 0.1855 | 19.70 | 0.0003 | 0.20 | 0.8218 | |
2018 | 0.07 | 0.7985 | 0.49 | 0.6269 | 2.30 | 0.1504 |
表7
双因素方差分析耕作方式与秸秆颗粒用量交互作用对土壤总孔隙度和毛管孔隙度的影响"
土层 Soil layer (cm) | 年份 Year | 指标 Index | 耕作方式Tillage management | 秸秆用量 Straw amount | 耕作方式×秸秆用量 Tillage management×straw amount | |||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
0-20 | 2016 | 总孔隙度Total porosity (%) | 23.96 | 0.0006 | 0.88 | 0.4435 | 0.75 | 0.4967 |
毛管孔隙度Capillary porosity (%) | 0.78 | 0.3992 | 0.08 | 0.9264 | 2.04 | 0.1806 | ||
2017 | 总孔隙度Total porosity (%) | 48.86 | 小鱼0.0001 | 5.79 | 0.0213 | 8.66 | 0.0066 | |
毛管孔隙度Capillary porosity (%) | 0.91 | 0.3622 | 0.31 | 0.7386 | 1.28 | 0.3191 | ||
2018 | 总孔隙度Total porosity (%) | 1.97 | 0.1903 | 5.26 | 0.0275 | 6.24 | 0.0174 | |
毛管孔隙度Capillary porosity (%) | 0.44 | 0.5236 | 0.40 | 0.6779 | 0.46 | 0.6425 | ||
20-40 | 2016 | 总孔隙度Total porosity(%) | 9.75 | 0.0108 | 3.87 | 0.0568 | 0.37 | 0.6971 |
毛管孔隙度Capillary porosity (%) | 9.62 | 0.0112 | 1.48 | 0.2728 | 5.60 | 0.0234 | ||
2017 | 总孔隙度Total porosity (%) | 6.40 | 0.0298 | 23.87 | 0.0002 | 18.66 | 0.0004 | |
毛管孔隙度Capillary porosity (%) | 0.03 | 0.8725 | 53.93 | 小鱼0.0001 | 1.74 | 0.2240 | ||
2018 | 总孔隙度Total porosity (%) | 23.13 | 0.0007 | 1.52 | 0.2646 | 0.25 | 0.7863 | |
毛管孔隙度Capillary porosity (%) | 12.78 | 0.0050 | 0.49 | 0.6255 | 4.21 | 0.0471 |
表8
不同秸秆颗粒施用方式下土壤R0.25、MWD、GMD及D的变化 "
土层 Soil layer (cm) | 处理 Treatment | 2016 | 2017 | 2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R0.25 | MWD (mm) | GMD (mm) | D | R0.25 | MWD (mm) | GMD (mm) | D | R0.25 | MWD (mm) | GMD (mm) | D | ||
0-20 | RG0 | 49.65±2.49c | 0.51±0.04b | 0.26±0.01d | 2.65±0.02a | 66.05±1.99c | 0.66±0.03d | 0.37±0.02d | 2.61±0.02a | 69.44±1.18b | 0.64±0.02d | 0.37±0.01c | 2.61±0.02a |
TG1 | 62.03±2.25ab | 0.61±0.01a | 0.34±0.02ab | 2.63±0.01a | 69.22±2.61c | 0.62±0.02d | 0.36±0.01d | 2.60±0.02ab | 72.71±2.02ab | 0.77±0.03ab | 0.44±0.03ab | 2.60±0.02a | |
TG2 | 63.53±2.89ab | 0.61±0.02a | 0.34±0.01ab | 2.62±0.01a | 76.38±2.81b | 0.75±0.03c | 0.42±0.03c | 2.59±0.01ab | 74.92±1.65ab | 0.87±0.06a | 0.49±0.03a | 2.59±0.02a | |
TG3 | 65.46±3.01a | 0.63±0.03a | 0.36±0.02a | 2.62±0.01a | 76.80±2.34b | 0.75±0.04c | 0.48±0.03c | 2.58±0.01ab | 69.46±1.05b | 0.66±0.03cd | 0.38±0.02c | 2.61±0.02a | |
RG1 | 61.77±2.03ab | 0.59±0.02a | 0.32±0.01bc | 2.63±0.01a | 82.41±3.01ab | 0.98±0.05b | 0.61±0.02b | 2.56±0.01b | 78.68±2.99a | 0.85±0.05a | 0.49±0.04a | 2.58±0.01a | |
RG2 | 59.84±1.98b | 0.51±0.02b | 0.29±0.01cd | 2.63±0.02a | 84.69±3.24a | 1.04±0.07ab | 0.65±0.02ab | 2.55±0.01b | 71.42±1.47b | 0.77±0.02ab | 0.42±0.02b | 2.60±0.01a | |
RG3 | 60.55±2.01ab | 0.49±0.03b | 0.30±0.01cd | 2.62±0.01a | 84.77±2.99a | 1.19±0.07a | 0.72±0.04a | 2.56±0.01b | 73.86±1.87ab | 0.72±0.02bc | 0.43±0.02ab | 2.59±0.01a | |
20-40 | RG0 | 61.51±1.71b | 0.65±0.04b | 0.35±0.01bc | 2.63±0.02a | 74.31±2.01ab | 0.88±0.04a | 0.49±0.03ab | 2.59±0.02a | 72.01±1.59a | 0.73±0.03ab | 0.42±0.02b | 2.60±0.01a |
TG1 | 62.70±1.32b | 0.53±0.02cd | 0.31±0.01c | 2.62±0.01a | 74.12±1.42ab | 0.76±0.03b | 0.44±0.01c | 2.59±0.02a | 72.11±1.77a | 0.67±0.02b | 0.40±0.01b | 2.60±0.01a | |
TG2 | 69.54±2.47a | 0.59±0.03bc | 0.36±0.02b | 2.60±0.01a | 74.15±1.27ab | 0.79±0.04b | 0.45±0.02bc | 2.59±0.01a | 75.01±2.04a | 0.72±0.03ab | 0.43±0.02ab | 2.59±0.01a | |
TG3 | 63.34±1.56b | 0.51±0.02d | 0.31±0.01c | 2.62±0.01a | 75.34±2.77ab | 0.74±0.02b | 0.44±0.01c | 2.58±0.01a | 73.44±1.99a | 0.67±0.02b | 0.40±0.02b | 2.59±0.01a | |
RG1 | 61.84±1.23b | 0.52±0.02cd | 0.31±0.01c | 2.62±0.01a | 72.52±1.44bc | 0.83±0.06ab | 0.47±0.03bc | 2.60±0.02a | 75.34±2.36a | 0.78±0.04a | 0.46±0.02a | 2.59±0.01a | |
RG2 | 62.29±1.20b | 0.56±0.03bc | 0.33±0.01c | 2.62±0.01a | 77.08±3.28a | 0.93±0.06a | 0.54±0.04a | 2.58±0.01a | 72.62±1.63a | 0.76±0.02a | 0.44±0.01ab | 2.60±0.02a | |
RG3 | 71.28±4.11a | 0.79±0.06a | 0.44±0.03a | 2.60±0.01a | 70.82±1.02c | 0.76±0.02b | 0.43±0.02c | 2.60±0.02a | 72.85±1.02a | 0.79±0.04a | 0.44±0.02ab | 2.60±0.01a |
[1] | 孙利军, 张仁陟, 黄高宝. 保护性耕作对黄土高原旱地地表土壤理化性状的影响. 干旱地区农业研究, 2007(6):207-211. |
SUN L J, ZHANG R Z, HUANG G B. Effects of the conservation tillage on the physicochemical characteristics of soil surface in the semi-arid areas of the Loess Plateau. Agricultural Research in the Arid Areas, 2007(6):207-211. (in Chinese) | |
[2] | 翟振, 李玉义, 逄焕成, 王婧, 张莉, 董国豪, 郭建军, 郭智慧. 黄淮海北部农田犁底层现状及其特征. 中国农业科学, 2016, 49(12):2322-2332. |
ZHAI Z, LI Y Y, PANG H C, WANG J, ZHANG L, DONG G H, GUO J J, GUO Z H. Study on present situation and characteristics of plow pan in the northern region of Huang Huai Hai Plain. Scientia Agricultura Sinica, 2016, 49(12):2322-2332. (in Chinese) | |
[3] | 姜灿烂, 何园球, 李辉信, 李成亮, 刘晓利, 陈平帮, 王艳玲. 长期施用无机肥对红壤旱地养分和结构及花生产量的影响. 土壤学报, 2009, 46(6):1102-1109. |
JIANG C L, HE Y Q, LI H X, LI C L, LIU X L, CHEN P B, WANG Y L. Effect of long-term inorganic fertilization on soil nutrient and structure and peanut yield in upland red soil. Acta Pedologica Sinica, 2009, 46(6):1102-1109. (in Chinese) | |
[4] | CANBOLAT M Y, BILEN S, CAKMAKCI R, SAHIN F, AYDIN A. Effect of plant growth promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology & Fertility of Soils, 2006, 42(4):350-357. |
[5] | 韩晓增, 邹文秀, 王凤仙, 王凤菊. 黑土肥沃耕层构建效应. 应用生态学报, 2009, 20(12):2996-3002. |
HAN X Z, ZOU W X, WANG F X, WANG F J. Construction effect of fertile cultivated layer in black soil. Chinese Journal of Applied Ecology, 2009, 20(12):2996-3002. (in Chinese) | |
[6] |
HUANG R, LAN M, LIU J, GAO M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environmental Science and Pollution Research, 2017, 24(36):1-11.
doi: 10.1007/s11356-015-5582-4 |
[7] |
JIANG H, HAN X Z, ZOU W X, HAO X X, ZHANG B . Seasonal and long-term changes in soil physical properties and organic carbon fractions as affected by manure application rates in the Mollisol region of Northeast China. Agriculture, Ecosystems & Environment, 2018, 268:133-143.
doi: 10.1016/j.agee.2018.09.007 |
[8] |
CONG P, LI Y Y, WANG J, GAO Z J, PANG H C, ZHANG L, LIU N, DONG J X. Increasing straw incorporation rates improves subsoil fertility and crop yield in the Huang-Huai-Hai Plain of China. Archives of Agronomy and Soil Science, 2020, 66:1976-1990.
doi: 10.1080/03650340.2019.1704735 |
[9] |
SCHÄFFER B, ATTINGER W, SCHULIN R. Compaction of restored soil by heavy agricultural machinery-soil physical and mechanical aspects. Soil and Tillage Research, 2007, 93(1):28-43.
doi: 10.1016/j.still.2006.03.007 |
[10] | 蒲境, 史东梅, 娄义宝, 段腾, 宋鸽. 不同耕作深度对红壤坡耕地耕层土壤特性的影响. 水土保持学报, 2019, 33(5):8-14. |
PU J, SHI D M, LOU Y B, DUAN T, SONG G. Effect of different tillage depth on soil properties of ploughing layer in slope cultivated land of red soil. Journal of Soil and Water Conservation, 2019, 33(5):8-14. (in Chinese) | |
[11] | 童文杰, 邓小鹏, 徐照丽, 马二登, 晋艳, 李军营. 不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响. 中国生态农业学报, 2016, 24(11):1464-1472. |
TONG W J, DENG X P, XU Z L, MA E D, JIN Y, LI J Y. Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco. Chinese Journal of Eco-Agriculture, 2016, 24(11):1464-1472. (in Chinese) | |
[12] | ROMANECKAS K, ARAUSKIS E, PILIPAVICIUS V, SAKALAUKAS A. Impact of short-term ploughless tillage on soil physical properties, winter oilseed rape seedbed formation and productivity parameters. Journal of Food Agriculture and Environment, 2011, 9(2):295-299. |
[13] |
ZHANG X, XIN X, ZHU A, ZHANG J B, YANG W L. Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena, 2017, 156:176-183.
doi: 10.1016/j.catena.2017.04.012 |
[14] | 王婧, 张莉, 逄焕成, 张珺穜. 秸秆颗粒化还田加速腐解速率提高培肥效果. 农业工程学报, 2017, 33(6):177-183. |
WANG J, ZHANG L, PANG H C, ZHANG J T. Returning granulated straw for accelerating decomposition rate and improving soil fertility. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6):177-183. (in Chinese) | |
[15] | 丛萍, 李玉义, 高志娟, 王婧, 张莉, 逄焕成. 秸秆颗粒化高量还田快速提高土壤有机碳含量及小麦玉米产量. 农业工程学报, 2019, 35(1):148-156. |
CONG P, LI Y Y, GAO Z J, WANG J, ZHANG L, PANG H C. High dosage of pelletized straw returning rapidly improving soil organic carbon content and wheat-maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1):148-156. (in Chinese) | |
[16] | 张莉, 王婧, 逄焕成, 张珺穜, 郭建军, 董国豪, 丛萍. 秸秆颗粒还田对土壤养分和冬小麦产量的影响. 中国生态农业学报, 2017, 25(12):1770-1778. |
ZHANG L, WANG J, PANG H C, ZHANG J T, GUO J J, DONG G H, CONG P. Effects of granulated straw incorporation on soil nutrient contents and grain yield of winter wheat. Chinese Journal of Eco-Agriculture, 2017, 25(12):1770-1778. (in Chinese) | |
[17] | 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性状测定法. 北京: 科学出版社, 1978. |
Laboratory of Soil Physics, Nanjing Institute of Soil Research, Chinese Academy of Sciences. Determination of Soil Physical Properties. Beijing: Science Press, 1978. (in Chinese) | |
[18] | 李肖, 陈晨, 林杰, 朱茜, 董波, 丁鸣鸣. 侵蚀强度对淮北土石山区土壤团聚体组成及稳定性的影响. 水土保持研究, 2019, 26(4):56-61, 67. |
LI X, CHEN C, LIN J, ZHU Q, DONG B, DING M M. Effect of erosion intensity on composition and stability of soil aggregates in rocky mountain area of Huaibei. Research of Soil and Water Conservation, 2019, 26(4):56-61, 67. (in Chinese) | |
[19] | 王珊, 毛玲, 廖浩, 蔡华, 孙文攀, 陈良丹. 种植年限对植烟土壤团聚体组成与稳定性的影响. 西南农业学报, 2017, 30(6):1421-1425. |
WANG S, MAO L, LIAO H, CAI H, SUN W P, CHEN L D. Effects of soil aggregates composition and stability with different planting years in tobacco. Southwest China Journal of Agricultural Sciences, 2017, 30(6):1421-1425. (in Chinese) | |
[20] | 蔡立群, 齐鹏, 张仁陟. 保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响. 水土保持学报, 2008, 22(2):141-145. |
CAI L Q, QI P, ZHANG R Z. Effects of conservation tillage measures on soil aggregates stability and soil organic carbon in two sequence rotation system with spring wheat and field pea. Journal of Soil and Water Conservation, 2008, 22(2):141-145. (in Chinese) | |
[21] | 崔建平, 田立文, 郭仁松, 林涛, 徐海江, 李发云. 深翻耕作对连作滴灌棉田土壤含水率及含盐量影响的研究. 中国农学通报, 2014, 30(12):134-139. |
CUI J P, TIAN L W, GUO R S, LIN T, XU H J, LI F Y. Effect of deep tilling on soil moisture content and salinity content of drip irrigation cotton content of drip irrigation cotton continuous cropping. Chinese Agricultural Science Bulletin, 2014, 30(12):134-139. (in Chinese) | |
[22] | 江培福, 雷廷武, 刘晓辉, 武阳, 李鑫, 王全九. 用毛细吸渗原理快速测量土壤田间持水量的研究. 农业工程学报, 2006(7):1-5. |
JIANG P F, LEI T W, LIU X H, WU Y, LI X, WANG Q J. Principles and experimental verification of capillary suction method for fast measurement of field capacity. Transactions of the Chinese Society of Agricultural Engineering, 2006(7):1-5. (in Chinese) | |
[23] | 张帅, 孔德刚, 常晓慧, 翟利民. 秸秆深施对土壤蓄水能力的影响. 东北农业大学学报, 2010, 41(6):127-129. |
ZHANG S, KONG D G, CHANG X H, ZHAI L M. Effect of straw deep application on soil water storage capacity. Journal of Northeast Agricultural University, 2010, 41(6):127-129. (in Chinese) | |
[24] | 李永宁, 王忠禹, 王兵, 张宝琦, 张娜娜. 黄土丘陵区典型植被土壤物理性质差异及其对导水特性影响. 水土保持学报, 2019, 33(6):176-181, 189. |
LI Y N, WANG Z Y, WANG B, ZHANG B Q, ZHANG N N. Differences in soil physical properties of typical vegetation in loess hilly region and effects on water conductivity. Journal of Soil and Water Conservation, 2019, 33(6):176-181, 189. (in Chinese) | |
[25] | 杨永辉, 武继承, 毛永萍, 何方, 张洁梅, 高翠民, 潘晓莹, 王越. 免耕对土壤剖面孔隙分布特征的影响. 中国生态农业学报, 2018, 26(7):1019-1028. |
YANG Y H, WU J C, MAO Y P, HE F, ZHANG J M, GAO C M, PAN X Y, WANG Y. Effect of no-tillage on pore distribution in soil profile. Chinese Journal of Eco-Agriculture, 2018, 26(7):1019-1028. (in Chinese) | |
[26] | RUBINIĆ V, HUSNJAK S. Clay and humus contents have the key impact on physical properties of Croatian Pseudogleys. Agriculturae Conspectus Scientificus, 2016, 81:187-191. |
[27] |
WRIGHT S F, ANDERSON R L. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biology and Fertility of Soils, 2000, 31(3/4):249-253.
doi: 10.1007/s003740050653 |
[28] |
XIE L, LIU M, NI B, WANG Y F. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention. Journal of Agricultural and Food Chemistry, 2012, 60:6921-6928.
doi: 10.1021/jf3001235 |
[29] | 王岩, 张莹, 沈其荣, 史瑞和, 黄东迈. 施用有机、无机肥后土壤微生物量、固定态铵的变化及其有效性研究. 植物营养与肥料学报, 1997, 3(4):307-314. |
WANG Y, ZHANG Y, SHEN Q R, SHI R H, HUANG D M. The changes of soil microbial biomass and the clay fixed ammonium after application of organic and inorganic fertilizers and their bio-effects. Plant Nutrition and Fertilizer Science, 1997, 3(4):307-314. (in Chinese) | |
[30] | LAL R, SHUKILA M K. Principles of Soil Physics. New York/Basel: Marchel Dekker,Inc., 2004. |
[31] | 苏静, 赵世伟. 土壤团聚体稳定性评价方法比较. 水土保持通报, 2009, 29(5):113-117. |
SU J, ZHAO S W. Comparison of the analysis methods for soil aggregate stability. Bulletin of Soil and Water Conservation, 2009, 29(5):113-117. (in Chinese) | |
[32] |
OBALUM S E, UTEAU-PUSCHMANN D, PETH S. Reduced tillage and compost effects on soil aggregate stability of a silt-loam Luvisol using different aggregate stability tests. Soil and Tillage Research, 2019, 189:217-228.
doi: 10.1016/j.still.2019.02.002 |
[33] |
SODHI G, BERI V, BENBI D. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil and Tillage Research, 2009, 103:412-418.
doi: 10.1016/j.still.2008.12.005 |
[34] | 丛萍, 逄焕成, 王婧, 刘娜, 李玉义, 张莉. 粉碎与颗粒秸秆高量还田对黑土亚耕层土壤有机碳的提升效应. 土壤学报, 2020, 57(4):811-823. |
CONG P, PANG H C, WANG J, LIU N, LI Y Y, ZHANG L. Effect of returning chopped and pelletized straw at a high rate enhancing soil organic carbon in subsoil of farmlands of black soil. Acta Pedologica Sinica, 2020, 57(4):811-823. (in Chinese) | |
[35] | 赵冬, 许明祥, 刘国彬, 张蓉蓉, 脱登峰. 用显微CT研究不同植被恢复模式的土壤团聚体微结构特征. 农业工程学报, 2016, 32(9):123-129. |
ZHAO D, XU M X, LIU G B, ZHANG R R, TUO D F. Characterization of soil aggregate microstructure under different revegetation types using micro-computed tomography. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9):123-129. (in Chinese) | |
[36] |
MAJOR J, LEHMANN J, RONDON M, GOODALE C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 2010, 16(4):1366-1379.
doi: 10.1111/gcb.2010.16.issue-4 |
[1] | 李婧妤,李倩,武雪萍,吴会军,宋霄君,张永清,刘晓彤,丁维婷,张孟妮,郑凤君. 免耕对农田土壤持水特性和有机碳储量影响的区域差异[J]. 中国农业科学, 2020, 53(18): 3729-3740. |
[2] | 申冠宇, 杨习文, 周苏玫, 梅晶晶, 陈旭, 彭宏扬, 蒋向, 贺德先. 土壤耕作技术对小麦出苗质量、根系功能及粒重的影响[J]. 中国农业科学, 2019, 52(12): 2042-2055. |
[3] | 王道中,花可可,郭志彬. 长期施肥对砂姜黑土作物产量及土壤物理性质的影响[J]. 中国农业科学, 2015, 48(23): 4781-4789. |
[4] | 邓羽松,丁树文,蔡崇法,吕国安,夏栋,朱芸. 鄂东南崩岗洪积扇土壤物理性质空间分异特征[J]. 中国农业科学, 2014, 47(24): 4850-4857. |
[5] | 白一茹, 王幼奇, 展秀丽. 陕北农牧交错带土地利用方式对土壤物理性质及分布特征的影响[J]. 中国农业科学, 2013, 46(8): 1619-1627. |
[6] | 徐尚起, 张明园, 孙国峰, 汤文光, 陈阜, 张海林. 应用耕作指数评价耕作措施对双季稻田土壤质量的影响[J]. 中国农业科学, 2011, 44(19): 3999-4006. |
[7] | 陈正发, 史东梅, 谢均强, 张 兵. 紫色土旱坡地土壤团聚体稳定性特征对侵蚀过程的影响[J]. 中国农业科学, 2011, 44(13): 2721-2729 . |
[8] | 聂军,郑圣先,杨曾平,廖育林,谢坚 . 长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响[J]. 中国农业科学, 2010, 43(7): 1404-1413 . |
[9] | 张岳芳,郑建初,陈留根,王子臣,朱普平,盛婧,王亚雷 . 稻麦两熟制农田不同土壤耕作方式对稻季CH4排放的影响 [J]. 中国农业科学, 2010, 43(16): 3357-3366 . |
[10] | 李会科,张广军,赵政阳,李凯荣. 渭北黄土高原旱地果园生草对土壤物理性质的影响[J]. 中国农业科学, 2008, 41(7): 2070-2076 . |
|