[1]Trudgill D L, Blok V C. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Reviews of Phytopathology, 2001, 39: 53-77.
[2]雷敬超, 黄慧琴. 南方根结线虫生物防治研究进展. 中国生物防治, 2007, 23(增刊): 76-81.
Lei J C, Huang H Q. Research advance on biological control of the Meloidogyne incognita. Chinese Journal of Biological Control, 2007, 23(Suppl.): 76-81. (in Chinese)
[3]赵鸿, 彭德良, 朱建兰. 根结线虫的研究现状. 植物保护, 2003, 29(6): 6-10.
Zhao H, Peng D L, Zhu J L. Reviews on the root-knot nematodes. Plant Protection, 2003, 29(6): 6-10. (in Chinese)
[4]Castagnone-Sereno P, Bongiovanni M, Palloix A, Dalmasso A. Selection for Meloidogyne incognita virulence against resistance genes from tomato and pepper and specificity of the virulence/resistance determinants. European Journal of Plant Pathology, 1996, 102: 585-590.
[5]Huang X, McGiffen M, Kaloshian I. Reproduction of Mi-virulent Meloidogyne incognita isolates on Lycopersicon spp. Journal of Nematology, 2004, 36(1): 69-75.
[6]Bleve-Zacheo T, Bongiovanni M, Melillo M T, Castagnone-Sereno P. The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Science, 1998, 133: 79-90.
[7]Djian-Caporalino C, Fazari A, Arguel M J, Vernie T , Casteele C V, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theoretical and Applied Genetics, 2007, 114(3): 473-486.
[8]Bost S C, Triantaphyllou A C. Genetic basis of the epidemiologic effects of resistance to Meloidogyne incognita in the tomato cultivar Small Fry. Journal of Nematology, 1982, 14(4): 540-544.
[9]Ornat C, Verdejo-Lucas S, Sorribas F J. A Population of Meloidogyne javanica in Spain virulent to the Mi resistance gene in tomato. Plant Disease, 2001, 85(3): 271-276.
[10]Viglierchio D R. Resistant host responses to ten California populations of Meloidogyne incognita. Journal of Nematology, 1978, 10: 224-227.
[11]Kaloshian I, Williamson V M, Miyao G, Lawn D A, Westerdahl B B. Resistance-breaking nematodes identified in California tomatoes. California Agriculture, 1996, 50(6): 18-19.
[12]蒋丽芬, 茆振川, 陈国华, 杨宇红, 谢丙炎. 南方根结线虫辣椒Me3 毒性群体适合度代价及专化性分析. 园艺学报, 2011, 38(3): 479-486.
Jiang L F, Mao Z C, Chen G H, Yang Y H, Xie B Y. Fitness cost and specialization of pepper Me3 virulent population in the parthenogenetic nematode Meloidogyne incognita. Acta Horticulturae Sinica, 2011, 38(3): 479-486. (in Chinese)
[13]Lushai G, Loxdale H D, Allen J A. The dynamic clonal genome and its adaptative potential. Biological Journal of the Linnean Society, 2003, 79: 193-208.
[14]Castagnone-Sereno P. Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity, 2006, 96: 282-289.
[15]Castagnone-Sereno P, Bongiovanni M, Wajnberg E. Selection and parasite evolution: A reproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyne incognita. Evolutionary Ecology, 2007, 21: 259-270.
[16]Puterka G J, Black Iv W C, Steiner W M, Burton R L. Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity, 1993, 70: 604-618.
[17]Kelkar Y D, Strubczewski N, Hile S E, Chiaromonte F, Eckert K A, Makova K D. What is a microsatellite: A computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC Repeats. Genome Biology and Evolution, 2011, 2: 620-635.
[18]Soubabere O, Jorge V, Notteghem J L, Lebrun M H, Tharreau D. Sequence characerized amplified region markers for the rice blast fungus, Magnaporthe grisea. Molecular Ecology Notes, 2001, 1: 19-21.
[19]Xu M L, Korban S S. AFLP-derived SCARs facilitate construction of a 1.1 Mb sequence-ready map of a region that spans the Vf locus in the apple genome. Plant Molecular Biology, 2002, 50: 803-818.
[20]Niroshini E, Everard J M D T, Karunanayake E H K, Tirimanne T L S. Detection of sequence characterized amplified region (SCAR) markers linked to sex expression in Carica papaya L. Journal of the National Science Foundation of Sri Lanka, 2008, 36(2): 145-150.
[21]Xu J H, Liu P L, Meng Q P, Long H. Characterisation of Meloidogyne species from China using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism. European Journal of Plant Pathology, 2004, 110: 309-315.
[22]Meng Q P, Long H, Xu J H. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. Javanica and M. Arenaria. Acta Phytopahologica Sinica, 2004, 34(3): 204-210.
[23]Cenis J L. Identification of four major Meloidogyne spp. by random amplified polymorphic DNA (RAPC-PCR). Phytopathology, 1993, 83: 76-78.
[24]Castagnone-Sereno P, Danchin E G J, Deleury E, Guillemaud T, Malausa T, Abad P. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics, 2010, 11(1): 598.
[25]Jung J, Han H, Ryu S H, Kim W. Microsatellite variation in the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle in South Korea. Genes & Genomics, 2010, 32(2): 151-158.
[26]Villate L, Esmenjaud D, Coedel S, Plantard O. Development of nine polymorphic microsatellite markers for the phytoparasitic nematode Xiphinema index, the vector of the grapevine fanleaf virus. Molecular Ecology Resources, 2009, 9(1): 229-232.
[27]Mulet K, Fargette M, Richaud M, Genson G, Castagnone-Sereno P. Isolation of microsatellites from an enriched genomic library of the plant-parasitic nematode Meloidogyne incognita and their detection in other root-knot nematode species. European Journal of Plant Pathology, 2010, 129(4): 501-505. |