[1] Holder V B, El-Kadi S W, Tricarico J M, Vanzant E S, McLeod K R, Harmon D L. The effects of crude protein concentration and slow release urea on nitrogen metabolism in Holstein steers. Archives of Animal Nutrition, 2013, 67(2): 93-103.
[2] Sinclair K D, Garnsworthy P C, Mann G E, Sinclair L A. Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal, 2014, 8 (2): 262-274.
[3] Berends H, van den Borne J J G C, Rojen B A, van Baal J, Gerrits W J J. Urea recycling contributes to nitrogen retention in calves fed milk replacer and low-protein solid feed. Journal of Nutrition, 2014, 144 (7): 1043-1049.
[4] Recktenwald E B, Ross D A, Fessenden S W, Wall C J, Van Amburgh M E. Urea-N recycling in lactating dairy cows fed diets with 2 different levels of dietary crude protein and starch with or without monensin. Journal of Dairy Science, 2014, 97 (3): 1611-1622.
[5] Naeem A, Drackley J K, Stamey J, Loor J J. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. Journal of Dairy Science, 2012, 95 (4): 1807-1820.
[6] Kertz A F. Review: Urea feeding to dairy cattle: a historical perspective and review. The Professional Animal Scientist, 2010, 26: 257-272.
[7] Fanchone A, Noziere P, Portelli J, Duriot B, Largeau V, Doreau M. Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitioning in dairy cows. Journal of Animal Science, 2014, 91 (2): 895-906.
[8] Aguerre M J, Wattiaux M A, Hunt T, Larget BR. Effect of dietary crude protein on ammonia-N emission measured by herd nitrogen mass labance in a freestall dairy barn managed under farm-like conditions. Animal, 2010, 4: 1390-1400.
[9] Hristov A N, Hanigan M D, Cole N A, Todd M J, McAllister T A, Ndegwa P M, Rotz A. Review: ammonia emissions from dairy farms and beef feedlots: a review. Canada Journal of Animal Science, 2011, 91: 1-35.
[10] Chibisa G E, Mutsvangwa T. Effects of feeding wheat or corn-wheat dried distillers grains with solubles in low- or high-crude protein diets on ruminal function, omasal nutrient flows, urea-N recycling, and performance in cows. Journal of Dairy Science, 2013, 96(10): 6550-6563.
[11] Giallongo F, Hristov A N, Oh J D, Frederick T, Weeks H, Werner J, Lapierre H, Patton R A, Gehman A, Parysll C. Effects of sslow-release urea and rumen-protected methionine and histidine on performance of dairy cows. Journal of Dairy Science, 2015, 98: 3292-3308.
[12] Rojen B A, Kristensen N B. Effect of time duration of ruminal urea infusions on ruminal ammonia concentrations and portal-drained visceral extraction of arterial urea-N in lactating Holstein cows. Journal of Dairy Science, 2012, 95(3): 1395-1409.
[13] Kristensen N B, Storm A C, Larsen M. Effect of dietary nitrogen content and intravenous urea infusion on ruminal and portal-drained visceral extraction of arterial urea in lactating Holstein cows. Journal of Dairy Science, 2010, 93 (6): 2670-2683.
[14] Calsamiglia S, Ferret A, Reynolds C K, Kristensen N B, van Vuuren A M. Strategies for optimizing nitrogen use by ruminants. Animal, 2010, 4 (7): 1184-1196.
[15] Ludden P A, Stohrer R M, Austin K J, Atkinson R L, Belden E L, Harlow H J. Effect of protein supplementation on expression and distribution of urea transporter-B in lambs fed low-quality forage. Journal of Animal Science, 2009, 87 (4): 1354-1365.
[16] Marini J C, Van Amburgh M E. Nitrogen metabolism and recycling in Holstein heifers. Journal of Animal Science, 2003, 81 (2): 545-552.
[17] Muscher A S, Schroder B, Breves G, Huber K. Dietary nitrogen reduction enhances urea transport across goat rumen epithelium. Journal of Animal Science, 2010, 88 (10): 3390-3398.
[18] Minocha R, Studley K, Saier M H. The urea transporter (UT) family: Bioinformatic analyses leading to structural, functional, and evolutionary predictions. Receptors Channels, 2009, 9 (6): 345-352.
[19] Smith C P, Rousselet G. Facilitative urea transporters. Journal of Membrane Biology, 2001, 183 (1): 1-14.
[20] Sands J M. Mammalian urea transporters. Annual Review of Physiology, 2003, 65: 543-566.
[21] Zimin A V, Delcher A L, Florea L, Kelley D R, Schatz M C, Puiu D, Hanrahan F, Pertea G, Van Tassell C P, Sonstegard T S, Marcais G, Roberts M, Subramanian P, Yorke J A, Salzberg S L. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biology, 2009, 10 (4). doi:ARTN R4210.1186/gb-2009-10-4-r42
[22] Levin E J, Cao Y, Enkavi G, Quick M, Pan Y P, Tajkhorshid E, Zhou M. Structure and permeation mechanism of a mammalian urea transporter. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (28): 11194-11199.
[23] Rojen B A, Poulsen S B, Theil P K, Fenton R A, Kristensen N B. Short communication: Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter- B and aquaporins in ruminal papillae from lactating Holstein cows. Journal of Dairy Science, 2011, 94 (5): 2587-2591.
[24] Simmons N L, Chaudhry A S, Graham C, Scriven E S, Thistlethwaite A, Smith C P, Stewart G S. Dietary regulation of ruminal bovine UT-B urea transporter expression and localization. Journal of Animal Science, 2009, 87 (10):3288-3299.
[25] Abdoun K, Stumpff F, Rabbani I, Martens H. Modulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2010, 298 (2): G190-G202.
[26] Echevarria M, Ilundain A A. Aquaporins. Journal of Physiology and Biochemistry, 1998, 54 (2): 107-118.
[27] Stewart G S, Smith C P. Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man. Nutrition Research Reviews, 2005, 18 (1): 49-62.
[28] Goodacre R. Metabolomics of a superorganism. Journal of Nutrition, 2007, 137 (1): 259s-266s.
[29] Laukova A, Koniarova I. Survey of urease activity in ruminal bacteria isolated from domestic and wild ruminants. Microbios, 1995, 84 (338): 7-11.
[30] Edwards J E, McEwan N R, Travis A J, Wallace R J. 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 2004, 86 (3): 263-281.
[31] 赵圣国, 王加启, 刘开朗, 李旦, 于萍. 宏基因组学方法分析奶牛瘤胃尿素分解菌的多样性. 中国农业大学学报, 2010, 15(1): 55-61.
Zhao S G, Wang J Q, Liu K L, Li D, Yu P. Analysis for the diversity of ureolytic bacterium from dairy rumen based on metagenomics. Journal of China Agricultural University, 2010, 15(1): 55-61. (in Chinese)
[32] Kim J N, Henriksen E D, Cann I K O, Mackie R I. Nitrogen utilization and metabolism in ruminococcus albus 8. Applied and Environmental Microbiology, 2014, 80 (10): 3095-3102.
[33] Holm L, Sander C. An evolutionary treasure: Unification of a broad set of amidohydrolases related to urease. Proteins-Structure Function and Genetics, 1997, 28 (1): 72-82.
[34] Pearson M A, Michel L O, Hausinger R P, Karplus P A. Structure of Cys319 variants and acetohydroxamate-inhibited by Klebsiella aerogenes urease. Biochemistry, 1997, 36: 8164-8172.
[35] Benini S, Rypniewski W R, Wilson K S, Miletti S, Ciurli S, Mangani S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis casts two nickels. Structure with Folding & Desing, 1999, 7(2): 205-216.
[36] Ha N C, Oh S T, Sung J Y, Cha K A, Lee M H, Oh B H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature Structural Biology, 2001, 8 (6): 505-509.
[37] Zambelli B, Musiani F, Benini S, Ciurli S. Chemistry of Ni2+ in urease: sensing, trafficking, and Catalysis. Accounts of Chemical Research, 2011, 44 (7): 520-530.
[38] Carlsson H, Nordlander E. Computational modeling of the mechanism of urease. Bioinorganic Chemistry and Applications, 2010. doi:Artn 36489110.1155/2010/364891
[39] Krajewska B. Ureases II. Properties and their customizing by enzyme immobilizations: A review. Journal of Molecular Catalysis B- Enzymatic, 2009, 59 (1-3): 22-40.
[40] Krajewska B. Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B-Enzymatic, 2009, 59 (1-3): 9-21.
[41] Farrugia M A, Macomber L, Hausinger R P. Biosynthesis of the Urease Metallocenter. Journal of Biological Chemistry, 2013, 288 (19): 13178-13185.
[42] Collins C M, Gutman D M, Laman H. Identification of a nitrogen-regulated promoter controlling expression of Klebsiella pneumoniae genes. Molecular Microbiology, 1993, 8 (1): 187-198.
[43] Dattelbaum J D, Lockatell C V, Johnson D E, Mobley H L T. UreR, the transcriptional activator of the Proteus mirabilis urease gene cluster, is required for urease activity and virulence in experimental urinary tract infections. Infection and Immunity, 2003, 71 (2): 1026-1030.
[44] Li Y H, Chen Y Y M, Burne R A. Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environmental Microbiology, 2000, 2 (2): 169-177.
[45] Young G M, Amid D, Miller V L. A bifunctional urease enhances survival of pathogenic Yersinia enterocolitica and Morganella morganii at low pH. Journal of Bacteriology, 1996, 178 (22): 6487-6495.
[46] 高占峰, 王红云, 付才, 黄志国, 吕林, 刘彬, 赵广永, 罗绪刚. 利用15N示踪技术研究尿素在人工瘤胃中的代谢. 核农学报, 2011, 25 (2): 317-324.
Gao Z F, Wang H Y, Fu G, Huang Z G, Lü L, Liu B, Zhao G Y, Luo X G. Metabolism of diet urea in the rumen in vitro by 15N-Tracer technique. Journal of Nuclear Agricultural Sciences, 2011, 25(2): 317-324. (in Chinese)
[47] 赵圣国, 王加启, 卜登攀, 周凌云, 孙鹏. 植物精油对尿素氮在瘤胃内容物中分布的影响. 中国农业科学, 2012, 45(16): 3399-3405.
Zhao S G, Wang J Q, Bu D P, Zhou L Y, Sun P. Effect of plant essential oil on the distribution of urea-nitrogen in rumen contents. Scientia Agricultura Sinica, 2012, 45(16): 3399-3405. (in Chinese)
[48] Moharrery A, Das T K. Correlation between microbial enzyme activities in the rumen fluid of sheep under different treatments. Reproduction Nutrition Development, 2001, 41 (6): 513-529. |