[1] |
何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展. 农业机械学报, 2016, 47(5): 231-244.
|
|
HE D J, LIU D, ZHAO K X. Review of perceiving animal information and behavior in precision livestock farming. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 231-244. (in Chinese)
|
[2] |
李富宽, 魏万红, 吕慎金, 杨燕. 关于羊发情行为影响因素的探析. 2015 年全国养羊生产与学术研讨会论文集, 2015.
|
|
LI F K, WEI W H, LÜ S J, YANG Y. An analysis of the factors influencing sheep estrus behavior. Proceedings of the 2015 National Sheep Production and Academic Seminar, 2015. (in Chinese)
|
[3] |
王淑霞, 冯晓毅. 羊的发情鉴定技术. 黑龙江动物繁殖, 2010, 18(1): 31-32.
|
|
WANG S X, FENG X Y. Estrus identification technology of sheep. Heilongjiang Journal of Animal Reproduction, 2010, 18(1): 31-32. (in Chinese)
|
[4] |
王晓东. 母羊的发情特征鉴定. 现代农业研究, 2016, 22(10): 37.
|
|
WANG X D. Identification of estrus characteristics of ewes. Modern Agriculture Research, 2016, 22(10): 37. (in Chinese)
|
[5] |
朱芷芫, 王海峰, 李斌, 赵文文, 朱君, 贾楠, 赵宇亮. 深度学习在畜禽典型行为识别中的研究进展. 中国农业科技导报, 2024, 26(10): 110-124.
|
|
ZHU Z Y, WANG H F, LI B, ZHAO W W, ZHU J, JIA N, ZHAO Y L. Research progress of deep learning in typical behavior recognition of livestock and poultry. Journal of Agricultural Science and Technology, 2024, 26(10): 110-124. (in Chinese)
|
[6] |
CHEN G P, LI C, GUO Y, SHU H, CAO Z, XU B B. Recognition of Cattle’s Feeding Behaviors Using Noseband Pressure Sensor With Machine Learning. 2022, 9: 822621.
|
[7] |
张曦宇, 武佩, 宣传忠, 杨建宁, 刘艳秋, 郝敏. 基于加速度传感器的种公羊运动行为识别. 中国农业大学学报, 2018, 23(11): 104-114.
|
|
ZHANG X Y, WU P, XUAN C Z, YANG J N, LIU Y Q, HAO M. Recognition of the movement behavior of stud rams based on acceleration sensor. Journal of China Agricultural University, 2018, 23(11): 104-114. (in Chinese)
|
[8] |
曹丽桃, 程曼, 袁洪波, 刘月琴, 随海燕, 赵晓霞. 可穿戴设备部署位置对羊只行为识别的影响与分析. 中国农机化学报, 2022, 43(12): 133-141.
|
|
CAO L T, CHENG M, YUAN H B, LIU Y Q, SUI H Y, ZHAO X X. Influence and analysis of deployment location of wearable devices on sheep behavior recognition. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 133-141. (in Chinese)
doi: 10.13733/j.jcam.issn.20955553.2022.12.020
|
[9] |
尹令, 刘财兴, 洪添胜, 周皓恩, Kae Hsiang Kwong. 基于无线传感器网络的奶牛行为特征监测系统设计. 农业工程学报, 2010, 26(3): 203-208, 388.
|
|
YIN L, LIU C X, HONG T S, ZHOU H E, KWONG K H. Design of system for monitoring dairy cattle’s behavioral features based on wireless sensor networks. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 203-208, 388. (in Chinese)
|
[10] |
王凯, 刘春红, 段青玲. 基于MFO-LSTM的母猪发情行为识别. 农业工程学报, 2020, 36(14): 211-219.
|
|
WANG K, LIU C H, DUAN Q L. Identification of sow Oestrus behavior based on MFO-LSTM. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 211-219. (in Chinese)
|
[11] |
何炜婷, 曾碧. 一种基于深度学习和SVM的动物姿态行为估计与心情识别方法. CN201910569930.1[2024-11-08].
|
|
HE W T, ZENG B. A Method for Animal Posture Behavior Estimation and Mood Recognition Based on Deep Learning and SVM. CN201910569930.1[2024-11-08]. (in Chinese)
|
[12] |
GU J X, WANG Z H, KUEN J, MA L Y, SHAHROUDY A, SHUAI B, LIU T, WANG X X, WANG G, CAI J F, CHEN T. Recent advances in convolutional neural networks. Pattern Recognition, 2018, 77: 354-377.
|
[13] |
李丹, 张凯锋, 李行健, 陈一飞, 李振波, 蒲东. 基于Mask R-CNN的猪只爬跨行为识别. 农业机械学报, 2019, 50(S1): 261-266, 275.
|
|
LI D, ZHANG K F, LI X J, CHEN Y F, LI Z B, PU D. Mounting behavior recognition for pigs based on mask R-CNN. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 261-266, 275. (in Chinese)
|
[14] |
ROHAN A, RAFAQ M S, HASAN M J, ASGHAR F, BASHIR A K, DOTTORINI T. Application of deep learning for livestock behaviour recognition: A systematic literature review. Computers and Electronics in Agriculture, 2024, 224: 109115.
|
[15] |
REN S. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015.
|
[16] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934, 2020.
|
[17] |
韩佳臻. 基于卷积神经网络的奶山羊行为识别方法研究[D]. 杨凌: 西北农林科技大学, 2019.
|
|
HAN J Z. Research on action recognition of dairy goat based on CNN[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
|
[18] |
HUANG G, LIU Z, VAN DER MAATEN L, WEINBERGER K Q. Densely connected convolutional networks. // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017. Honolulu, HI. IEEE, 2017: 2261-2269.[LinkOut]
|
[19] |
谢忠红, 刘悦怡, 宋子阳, 徐焕良. 基于时序运动特征的奶牛爬跨行为识别研究. 南京农业大学学报, 2021, 44(1): 194-200.
|
|
XIE Z H, LIU Y Y, SONG Z Y, XU H L. Research on recognition of crawling behavior of cows based on temporal motion features. Journal of Nanjing Agricultural University, 2021, 44(1): 194-200. (in Chinese)
|
[20] |
郝玉胜, 林强, 王维兰, 郭敏, 逯玉兰. 基于Wi-Fi无线感知技术的奶牛爬跨行为识别. 农业工程学报, 2020, 36(19): 168-176.
|
|
HAO Y S, LIN Q, WANG W L, GUO M, LU Y L. Recognition of crawling behavior of dairy cows using Wi-Fi wireless sensing technology. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 168-176. (in Chinese)
|
[21] |
WANG Z W, LIU J J, ARABLOUEI R, BISHOP-HURLEY G, MATTHEWS M, BORGES P. Multi-modal sensing for behaviour recognition. // Proceedings of the 28th Annual International Conference on Mobile Computing and Networking. Sydney NSW Australia. ACM, 2022: 900-902.
|
[22] |
翟亚红, 王杰, 徐龙艳, 祝岚, 原红光, 赵逸凡. 基于改进YOLO v5n的舍养绵羊行为识别方法. 农业机械学报, 2024, 55(4): 231-240.
|
|
ZHAI Y H, WANG J, XU L Y, ZHU L, YUAN H G, ZHAO Y F. Behavior recognition of domesticated sheep based on improved YOLO v5n. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(4): 231-240. (in Chinese)
|
[23] |
王少华. 基于视频分析和深度学习的奶牛爬跨行为检测方法研究[D]. 杨凌: 西北农林科技大学, 2021.
|
|
WANG S H. Research on cow mounting behavior detection method based on video analysis and deep learning[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
|
[24] |
王旺, 王福顺, 张伟进, 刘红达, 王晨, 王超, 何振学. 基于改进YOLO v8s的羊只行为识别方法. 农业机械学报, 2024, 55(7): 325-335, 344.
|
|
WANG W, WANG F S, ZHANG W J, LIU H D, WANG C, WANG C, HE Z X. Sheep behavior recognition method based on improved YOLO v8s. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(7): 325-335, 344. (in Chinese)
|
[25] |
蒋畅江, 何旭颖, 向杰. LOL-YOLO: 融合多注意力机制的低照度目标检测. 计算机工程与应用, 2024, 60(24): 177-187.
doi: 10.3778/j.issn.1002-8331.2406-0424
|
|
JIANG C J, HE X Y, XIANG J. LOL-YOLO: low-light object detection incorporating multiple attention mechanisms. Computer Engineering and Applications, 2024, 60(24): 177-187. (in Chinese)
|
[26] |
薛鸿翔, 沈明霞, 刘龙申, 陈金鑫, 单武鹏, 孙玉文. 基于改进YOLO v5s的经产母猪发情检测方法研究. 农业机械学报, 2023, 54(1): 263-270.
|
|
XUE H X, SHEN M X, LIU L S, CHEN J X, SHAN W P, SUN Y W. Estrus detection method of parturient sows based on improved YOLO v5s. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 263-270. (in Chinese)
|
[27] |
王政, 许兴时, 华志新, 尚钰莹, 段援朝, 宋怀波. 融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别. 农业工程学报, 2022, 38(23): 130-140.
|
|
WANG Z, XU X S, HUA Z X, SHANG Y Y, DUAN Y C, SONG H B. Lightweight recognition for the Oestrus behavior of dairy cows combining YOLO v5n and channel pruning. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(23): 130-140. (in Chinese)
|
[28] |
秦箐, 刘志红, 赵存, 张崇妍, 代东亮, 孙炯清, 王志新, 李金泉. 机器视觉技术在畜牧业中的应用. 农业工程, 2021, 11(7): 27-33.
|
|
QIN Q, LIU Z H, ZHAO C, ZHANG C Y, DAI D L, SUN J Q, WANG Z X, LI J Q. Application of machine vision technology in livestock and poultry. Agricultural Engineering, 2021, 11(7): 27-33. (in Chinese)
|
[29] |
KHANAM R, HUSSAIN M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv preprint arXiv:2410.17725, 2024.
|
[30] |
MA L, MA T Y, LIU R S, FAN X, LUO Z X. Toward fast, flexible, and robust low-light image enhancement. // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 18-24, 2022. New Orleans, LA, USA. IEEE, 2022: 5627-5636.
|
[31] |
LAND E H. The retinex theory of color vision. Scientific American, 1977, 237(6): 108-128.
pmid: 929159
|
[32] |
DAI Y M, GIESEKE F, OEHMCKE S, WU Y Q, BARNARD K. Attentional feature fusion // 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). January 3-8, 2021. Waikoloa, HI, USA. IEEE, 2021: 3559-3568.
|
[33] |
LIU W Z, LU H, FU H T, CAO Z G. Learning to upsample by learning to sample. // 2023 IEEE/CVF International Conference on Computer Vision (ICCV). October 1-6, 2023. Paris, France. IEEE, 2023: 6004-6014.
|
[34] |
YU Z P, HUANG H B, CHEN W J, SU Y X, LIU Y H, WANG X Y. YOLO-FaceV2: A scale and occlusion aware face detector. Pattern Recognition, 2024, 155: 110714.
|