中国农业科学 ›› 2025, Vol. 58 ›› Issue (2): 355-386.doi: 10.3864/j.issn.0578-1752.2025.02.011
徐重新1,2(), 沈建兴1,2, 金嘉凤1,2, 何鑫1, 谢雅晶1, 张霄1, 朱庆1, 刘媛1, 刘贤金1
收稿日期:
2024-06-12
接受日期:
2024-11-27
出版日期:
2025-01-21
发布日期:
2025-01-21
联系方式:
徐重新,E-mail:hhxyxcx@163.com
基金资助:
XU ChongXin1,2(), SHEN JianXing1,2, JIN JiaFeng1,2, HE Xin1, XIE YaJing1, ZHANG Xiao1, ZHU Qing1, LIU Yuan1, LIU XianJin1
Received:
2024-06-12
Accepted:
2024-11-27
Published:
2025-01-21
Online:
2025-01-21
摘要:
基因工程抗体是抗体人工定向设计的巨大飞跃,其以重组抗原结合片段、单链抗体、纳米抗体等形式,广泛渗透应用到农业和食品安全中的各个领域;相关创新探索研究还在竞先推进,发展极为迅速。本文总结了当前基因工程抗体主要衍生形式及其依托的噬菌体、酵母、细菌、核糖体、哺乳动物细胞等抗体库搭载展示平台和相应配套的抗原特异性抗体靶向筛选体系;分析它们借助定点突变、链置换、易错PCR、DNA改组以及同源或异源抗体功能片段甚至与其他功能蛋白融合等策略,在体外开展亲和力成熟乃至提升环境胁迫稳定性等特性功能修饰的关键技术特点;概述它们采用昆虫和动物细胞、植物组织、酵母、大肠杆菌以及其他微生物等表达体系制备相应抗体蛋白状况和潜在优化策略。着重梳理基因工程抗体在产地环境危害物、农兽药投入品、真菌毒素、食源性致病微生物及其有毒代谢物、食源性过敏原等农业食品安全危害物免疫分析上的应用研究现状;同时结合笔者团队近年以Ab2β抗独特型抗体具备模拟抗原结构乃至生物活性功能的特性为理论依据,在模拟Bt Cry毒素结构及抗虫功能的Ab2β抗独特型基因工程抗体和模拟万古霉素抗金黄色葡萄球菌功能的Ab2β抗独特型基因工程抗体等方面创新研发的系列最新成果和相关研究经验,进一步探讨了基因工程抗体在农业食品安全危害物绿色检测和绿色防控创新应用策略研究上的未来发展动向和可行捷径,为基因工程抗体在农业食品安全乃至营养品质评估等领域相关应用研究提供最新最全面的具有参考价值的文献资料和潜在启发思路。
徐重新, 沈建兴, 金嘉凤, 何鑫, 谢雅晶, 张霄, 朱庆, 刘媛, 刘贤金. 基因工程抗体功能修饰及其在农业食品安全中的应用策略[J]. 中国农业科学, 2025, 58(2): 355-386.
XU ChongXin, SHEN JianXing, JIN JiaFeng, HE Xin, XIE YaJing, ZHANG Xiao, ZHU Qing, LIU Yuan, LIU XianJin. Functional Modification of Genetically Engineered Antibodies and Their Application Strategies in Agriculture and Food Safety[J]. Scientia Agricultura Sinica, 2025, 58(2): 355-386.
表1
基因工程抗体常见功能修饰策略及相应代表性研究实例"
功能修饰及策略 Functional modification and strategies | 供试对象 Experimental subject | 修饰区位 Modified region or site | 实施效果 Implementation effect | 参考文献 Reference | |
---|---|---|---|---|---|
亲和力修饰Affinity modification | 定点突变 Site-directed mutagenesis | anti-TpoR rFab | VH-CDR3 “DRKLGGSDYW→DRKLGGLDYW”、VL-CDR3 “QQSNSFPWTF→ QRSNSPPYTF” | 目标突变体的亲和力提高了20.68倍 The affinity of the target mutant was increased 20.68-fold | [ |
anti-PD-L1 scFv | VH-CDR3 “TKWELVDPYDY→SKWELVDPYAY” | 目标突变体的亲和力提高了9.8倍 The affinity of the target mutant was increased 9.8-fold | [ | ||
anti-sarafloxacin scFv | VH-CDR3 “Y99H” | 目标突变体的亲和力提高了7倍 The affinity of the target mutant was increased 7-fold | [ | ||
anti-Bt Cry sdAb | VH-CDR3 “N105L、R106L、V107Y、R114K” | 目标突变体的抗原识别灵敏度提高了1.34-2.7倍 The antigen recognition sensitivity of target mutant was increased 1.34-2.7-fold. | [ | ||
anti-cortisol scFv | VH-FR1 “1QVQLQQPGAE10→1QVQLQQDPGAE10” | 目标突变体的亲和力提高了31倍 The affinity of the target mutant was increased 31-fold | [ | ||
anti-amantadine scFv | VL-CDR3 “G107F” | 目标突变体的亲和力提高了3.9倍 The affinity of the target mutant was increased 3.9-fold | [ | ||
anti-ciprofloxacin scFv | VL-CDR1 “V160S” | 目标突变体的亲和力提高了16.6倍 The affinity of the target mutant was increased 16.6-fold | [ | ||
anti-estradiol-17β scFv | VL-CDR1 “I29V” | 目标突变体的亲和力提高了5倍 The affinity of the target mutant was increased 5-fold | [ | ||
anti-MC-LR scFv | VL-CDR1 “ATWNMAY→ARYYWYGAFDI” | 目标突变体的亲和力提高了27.8倍 The affinity of the target mutant was increased 27.8-fold | [ | ||
anti-MC-LR scFv | VL-CDR3 “F91Y” | 目标突变体的亲和力提高了63.3倍 The affinity of the target mutant was increased 63.3-fold | [ | ||
anti-amoxicillin scFv | VL-CDR3 “S95E” | 目标突变体的亲和力提高了6倍 The affinity of the target mutant was increased 6-fold | [ | ||
anti-dengue virus scFv | VH-CDR1 “D31L”、VH-CDR3 “Y105W”、 VL-CDR3 “S227W” | 目标突变体的亲和力提高了~100倍 The affinity of the target mutant was increased ~100-fold | [ | ||
anti-HBV scFv | VL-CDR3 “Y96S”、VH-CDR3 “D98S” | 目标突变体的亲和力和热稳定性显著提高 The affinity and thermal stability of the target mutant were significantly improved | [ | ||
anti-quinalphos Nbs | CDR1 “R29W” | 目标突变体的抗原识别灵敏度提高了25倍 The antigen recognition sensitivity of target mutant was increased 25-fold | [ | ||
anti-deoxynivalenol Nbs | CDR3 “T102Y” | 目标突变体的亲和力提高了3.2倍 The affinity of the target mutant was increased 3.2-fold | [ | ||
anti-aflatoxin B1 Nbs | CDR3 “S102D” | 目标突变体的抗原识别灵敏度提高了3.3倍 The antigen recognition sensitivity of target mutant was improved 3.3-fold | [ | ||
anti-ochratoxin A Nbs | FR1 “G53Q”、CDR2 “S102D” | 目标突变体的亲和力提高了1.36倍 The affinity of the target mutant was increased 1.36-fold | [ | ||
anti-syn Nbs | FR3 “N77D” | 目标突变体的亲和力提高了48.5倍 The affinity of the target mutant was increased 48.5-fold | [ | ||
链置换 Chain- shuffling | anti-aflatoxin B1 scFv | 重链置换重组VH-VL Heavy chain replacement recombination VH-VL | 目标突变体的抗原识别灵敏度提高了7.5倍 The antigen recognition sensitivity of target mutant was increased 7.5-fold | [ | |
anti-HBV scFv | 重链置换重组VH-VL Heavy chain replacement recombination VH-VL | 目标突变体的亲和力提高了6.5倍 The affinity of the target mutant was increased 6.5-fold | [ | ||
anti-halofuginone scFv | 轻链置换重组VH-VL Light chain replacement recombination VH-VL | 目标突变体的抗原识别灵敏度提高了185倍 The antigen recognition sensitivity of target mutant was increased 185-fold | [ | ||
anti-BoNT scFv | 轻链置换重组VH-VL Light chain replacement recombination VH-VL | 目标突变体的亲和力提高了77倍 The affinity of the target mutant was increased 77-fold | [ | ||
anti-MC-LR scFv | 轻链置换重组VH-VHH Light chain replacement recombination VH-VHH | 目标突变体的抗原结合活性显著提高 The antigen-binding activity of target mutant was significantly improved | [ | ||
anti-Bt Cry toxin idiotypic scFv | 双轻链置换重组VL-VL Double light chain replacement recombination VL-VL | 目标突变体的亲和力提高了1.37倍 The affinity of the target mutant was increased 1.37-fold | [ | ||
anti-Cry toxin scFv | 双轻链置换重组VL-VL Double light chain replacement recombination VL-VL | 目标突变体的抗原结合活性提高了1.44倍 The antigen-binding activity of target mutant was increased 1.44-fold | [ | ||
易错PCR Error-prone PCR | anti-streptavidin rFab | VL-CDR1 “H34R”、VL-CDR3 “Y96H” | 目标突变体的亲和力提高了10.7倍 The affinity of the target mutant was increased 10.7-fold | [ | |
anti-TCR scFv | VH-CDR2 “Q50L”、VL-FR1 “D1N”、VL-CDR2 “Q53L”、VL-FR3 “S65N” | 目标突变体的亲和力提高了100倍 The affinity of the target mutant was increased 100-fold | [ | ||
anti-aflatoxin B1 scFv | VH-FR1 “T28P”、VH-FR3 “A94V”、VH-RF4 “T110A”、VL-FR2 “E40V”、VL-CDR2 “A57V” | 目标突变体的亲和力提高了9倍 The affinity of the target mutant was increased 9-fold | [ | ||
anti-CD22 scFv | VL-CDR1 “N34A” | 目标突变体的亲和力提高了10倍 The affinity of the target mutant was increased 10-fold | [ | ||
anti-CIT scFv | VH-CDR3 “T100P”、VL-FR1 “M151T” | 目标突变体的亲和力提高了13.25倍 The affinity of the target mutant was increased 13.25-fold | [ | ||
anti-cortisol scFv | VH “S21P” & linker “S8P”、VL “K27R” | 目标突变体的亲和力提高了63倍 The affinity of the target mutant was increased 63-fold | [ | ||
anti-estradiol-17β scFv | VH-FR1 “K19R”、VH-CDR2 “Y57F”、VH-RF3 “S88P、E89G”、VH-CDR3 “L111Q”、VL-CDR1 “Q166R、I168V”、VL-FR2 “L175M”、VL-CDR2 “H189N”、VL-FR3 “S202G、S216G” | 目标突变体的亲和力提高了151倍 The affinity of the target mutant was increased 151-fold | [ | ||
anti-SAL scFv | VH-CDR3 “T101S、F103Y”、VL- CDR3 “S216N、V218T、T221L” | 目标突变体的亲和力提高了~25倍 The affinity of the target mutant was increased ~25-fold | [ | ||
anti-UreC Nbs | FR2 “N23K、P29R、R34Q”、CDR2 “F42I、F43S”、FR3 “N54D、G58R、N64D、F71Y、V84M”、FR4 “R109Q、R118Q、A119P” | 目标突变体的抗原结合活性提高了1.5倍 The antigen-binding activity of target mutant was increased 1.5-fold | [ | ||
anti-ClfA Nbs | FR1 “R19Y”、CDR1 “A24G”、CDR2 “G50A”、FR3 “D61V、K75R” | 目标突变体的抗原结合活性提高了~80倍 The antigen-binding activity of target mutant was increased ~80-fold | [ | ||
DNA改组 DNA shuffling | anti-fusarium scFv | VH-FR1 “V23A” & VH-CDR1 “D30G”、VL-FR3 “G209S” | 目标突变体的抗原结合活性提高了15倍 The antigen-binding activity of target mutant was increased 15-fold | [ | |
anti-ProGRP scFv | VL-FR1 “P12A”、VL-CDR1 “T36A”、VH-CDR1 “V162M、S165P”、VH- CDR3 “D238N”、VH-FR3 “T248I” | 目标突变体的亲和力提高了9倍 The affinity of the target mutant was increased 9-fold | [ | ||
anti-SARS-CoV scFv | VH-CDR2 “S52G、N57S”、VH-FR3 “T91A”、VH-FR4 “S117N”、VL- CDR1 “S167N”、VL-CDR2 “S189N”、VL-FR3 “S202N”、VL-FR4 “T239A” | 目标突变体的亲和力提高了270倍 The affinity of the target mutant was increased 270-fold | [ | ||
其他策略 Other strategies | anti-Salmonella Nbs | VHH→VHH-linker-VHH | 目标二价抗体复合物的抗原识别灵敏度提高了7.5倍 The antigen recognition sensitivity of the target bivalent-antibody complex was increased 7.5-fold | [ | |
anti-SARS-COV2 Nbs | Bivalent-VHH recombinant fused by SpyTag/SpyCatcher protien | 目标二价抗体复合物的亲和力提高了56倍 The affinity of the targeted bivalent-antibody complex was increased 56-fold | [ | ||
anti-HER3 scFv | Tri-scFv recombinant fused by SpyTag/SpyCatcher protien | 目标三价抗体复合物的亲和力提高了12倍 The affinity of the targeted trivalent-antibody complex was increased 12-fold | [ | ||
anti-aflatoxin B1 scFv | scFv fused to alkaline phosphatase (ALP) | 目标scFv-ALP复合物的抗原识别灵敏度提高了3倍 The antigen recognition sensitivity of the target scFv-ALP complex was increased 3-fold | [ | ||
anti-HIV-1 Nbs | VHH fused to ligand-tailored SH3 domain | 目标VHH-SH3融合复合物的亲和力提高了28倍 The affinity of the target VHH-SH3 fusion complex was increased 28-fold | [ | ||
anti-hCG Nbs | VHH fused to PMMA-binding peptide | 目标VHH-PMMA-tag融合复合物的抗原结合活性提高了10倍 The antigen-binding activity of the target VHH-PMMA- tag fusion complex was increased 10-fold | [ | ||
稳定性修饰Stability modification | 热稳定性 Thermal stability | anti-adalimumab rFab | VH “G10C/P210C” & VL “P40C/ E165C” | 目标突变体的热稳定耐受性提高了6.5 ℃ The thermal stability tolerance of the target mutant was improved 6.5 ℃ | [ |
anti-MS2 rFab | VL-FR2 “F36Y、R46L”、 VL-FR3 “Y87F” | 目标突变体的热稳定耐受性提高了8.4 ℃ The thermal stability tolerance of the target mutant was improved 8.4 ℃ | [ | ||
anti-interleukin- 17A rFab | VL-CDR1 “S30G”、VL-CDR2 “D53A”、VL-CDR3 “D92V” & VH-CDR1 “V61P、S65G”、VH-CDR3 “E97D” | 目标突变体的热稳定耐受性提高了10.8 ℃ The thermal stability tolerance of the target mutant was improved 10.8 ℃ | [ | ||
anti-aflatoxin B1 scFv | VH “G44HC”、VL “Q100C” | 目标突变体的热稳定性显著增强 The thermal stability of the target mutant was significantly enhanced | [ | ||
anti-CXCL13 scFv | VL-CDR3 “SSYTYYDTYV→ASATLLDTYV” | 目标突变体的热稳定耐受性提高了5 ℃ The thermal stability tolerance of the target mutant was improved 5 ℃ | [ | ||
anti-cTnI scFv | VH-CDR3 “SSYQCSGDYC→SSYQASGDYA” | 目标突变体的热稳定性显著增强 The thermal stability of the target mutant was significantly enhanced | [ | ||
anti-EGFR scFv | VH-VL (lambda framework)→ VH-VL (kappa framework) | 目标突变体的热稳性显著增强 The thermal stability of the target mutant was significantly enhanced | [ | ||
anti-carbaryl Nbs | VHH→VHH-linker-VHH | 目标二价抗体复合物的热稳定性和亲和力显著提高 The thermal stability and affinity of the target bivalent antibody complex were significantly improved | [ | ||
anti-hCG Nbs | CDR2 “N52S”、FR3 “N74S、N84T” | 目标突变体的热稳性提高了~50% The thermal stability tolerance of the target mutant was improved ~50% | [ | ||
anti-HAS Nbs | CDR1 “G32D”、CDR2 “R50L”、FR3 “G78A”、FR4 “S133R” | 目标突变体的热稳定耐受性提高了12 ℃ The thermal stability tolerance of the target mutant was improved 12 ℃ | [ | ||
anti-TNF-α Nbs | CDR2 “E50Q、T53W” | 目标突变体的热稳定耐受性提高了7.4 ℃且亲和力提高了3.86倍 The thermal stability tolerance of the target mutant was increased 7.4 ℃ and the affinity was increased 3.86- fold | [ | ||
anti-α-synuclein peptide Nbs | FR3 “S96F” | 目标突变体的热稳定耐受性提高了7.4 ℃且亲和力提高了7倍 The thermal stability tolerance of the target mutant was increased 7.4 ℃ and the affinity was increased 7-fold | [ | ||
anti-lysozyme Nbs | FR3 “A79I” | 目标突变体的热稳定耐受性提高了5 ℃ The thermal stability tolerance of the target mutant was increased 5 ℃ | [ | ||
anti-CD47 Nbs | CDR3 “G107W、T108H、S109V、F110A” | 目标突变体的热稳定耐受性提高了7.36 ℃且亲和力提高了87.4倍 The thermal stability tolerance of the target mutant was increased 7.36 ℃ and the affinity was increased 87.4-fold | [ | ||
pH稳定性 pH stability | anti-SAG1 scFv | VH-14 sites/VL-4 sites (突变位点较多,未细列 There are many mutation sites, not detailed list) | 目标突变体的碱性pH耐受性增强了21% The alkaline pH tolerance of target mutant was enhanced 21% | [ | |
anti-alpaca-Fab Nbs | CDR1 “S30N”、FR2 “Q39E”、 CDR2 “H56Y” | 目标突变体的碱性pH耐受性增强了~37%且亲和力提高了10倍 The alkaline pH tolerance of target mutant was enhanced ~37% and the affinity was increased 10-fold | [ |
表2
基因工程抗体主要表达策略及相应代表性研究实例"
表达策略Expression strategy | 供试对象 Experimental subject | 蛋白表达量 Protein expression level | 参考文献 Reference | ||
---|---|---|---|---|---|
宿主Host | 载体Vector | ||||
大肠杆菌表达系统 E. coli expression systems | E. coli BL21-DE3 | pRSFDuet phoA-STII | anti-IGF1R rFab | 6.3 mg∙L-1* | [ |
E. coli BL21-DE3 | pLK04 | synthetic human rFab | 10 mg∙L-1* | [ | |
E. coli BL21-DE3 | pLac-DsbA/C | anti-MMP-14 rFab | 30 mg∙L-1* | [ | |
E. coli-CyDisCo | pET23 | anti-Herceptin rFab | 42 mg∙L-1* | [ | |
E. coli FA113 | pFAB1 | anti-NhaA rFab | 30 mg∙L-1* | [ | |
E. coli BL21-pLysS | pET22b | anti-EGFRvIII scFv | 133.33 mg∙L-1 | [ | |
E. coli Rosetta | pET22b | anti-CRP scFv | 3.0 g∙L-1* | [ | |
E. coli Rosetta | pET23a | anti-influenza PB2 scFv | 20 mg∙L-1* | [ | |
E. coli BL21-DE3 | pET28a | anti-HER2 scFv | 30 mg∙L-1* | [ | |
E. coli BL21-DE3 | pSAR-2 | anti-HIV scFv | 0.8 g∙L-1* | [ | |
E. coli HB2151 | pIT2 phagemid | anti-MC-LR scFv | 2.56 mg∙L-1* | [ | |
E. coli BL21-DE3 | pET26b | anti-Van idiotypic sdAb | 3.01 mg∙L-1 | [ | |
E. coli BL21-DE3 | pET26b | anti-MC-LR Nbs | 1.27 mg∙L-1* | [ | |
E. coli Rosetta | pET25b | anti-DON Nbs | 40 mg∙L-1* | [ | |
E. coli BL21-DE3 | pET45b | anti-α-Amylase Nbs | 70 mg∙L-1* | [ | |
酵母表达系统 Yeast expression systems | Saccharomyces cerevisiae | pYE | anti-HIV-1 scFv | 0.5 mg∙L-1* | [ |
pUR4548 | anti-hapten Nbs | 100 mg∙L-1* | [ | ||
Pichia pastoris | pPink-αHC | anti-ranibizumab rFab | 30 mg∙L-1* | [ | |
pPICZαA | anti-MC-LR scFv | 44.6 mg∙L-1* | [ | ||
pPICZαA | anti-αIIbβ3 TEG4 scFv | 30 mg∙L-1* | [ | ||
pTHI11-synMsn4 | anti-gelsolin Nbs | 8 g∙L-1* | [ | ||
昆虫及动物细胞表达系统 Insect and animal cell expression systems | HEK293 cells | pJK7 | anti-HPep rFab | 5 mg∙L-1* | [ |
pcDNA | scFv | 22 mg∙L-1* | [ | ||
CHO cells | pBIC-PS | anti-AIS rFab | 1 g∙L-1* | [ | |
Sf9 cells | pIB/V5 | anti-VcHK scFv | - | [ | |
pFast-Bac | anti-AFB1 scFv | - | [ | ||
anti-parathion-ethyl scFv | - | [ | |||
Trichoplusia ni BTI-Tn5B1 cells | pIHAneo::pXINSECT | anti-bovine RNaseA rFab | 120 mg∙L-1* | [ | |
Bombyx mori BmN cells | pENTR11::pDEST8/v BmNPV/T3 bacmid | anti-SARS-CoV scFv | 2.34 g∙L-1* | [ | |
植物表达系统 Plant expression systems | Tobacco | pENTR4®:: pK7WG2D | anti-venom scFv | ~62 mg∙kg-1** | [ |
pBI-Ω | anti-TNC scFv | 50—100 mg∙kg-1 ** | [ | ||
pBI121 | anti-HER2 Nbs | - | [ | ||
Arabidopsis thaliana | pPhasBar | anti-TNF-α scFv | 0.634 g∙kg-1 ** | [ | |
pPphas-GBP | anti-F4+ETEC Nbs | 44.3 g∙kg-1 ** | [ | ||
Rice | pZH2B | anti-human norovirus Nbs | 4.63 g∙kg-1 ** | [ | |
Spirodela punctata | pRT100::pCAMBIA1304 | anti-TNFα scFv | 126 mg∙kg-1 ** | [ | |
Chlamydomonas reinhardtii | pBS | anti-αCD22 scFv | ~61.5 mg∙kg-1 ** | [ | |
其他表达系统 Other expression systems | Corynebacterium glutamicum | pPKStrast | anti-HER2 rFab | 57.6 mg∙L-1 * | [ |
Bifidobacterium longum | pESH100 | anti-exotoxin-A Nbs | 1 mg∙L-1 * | [ | |
Bacillus subtilis | pRBBm117 | anti-lysozyme scFv | 130 mg∙L-1 * | [ | |
Brevibacillus choshinensis | pBIC | anti-trastuzumab rFab | 145 mg∙L-1 * | [ | |
anti-IZUMO1 Nbs | 3 g∙L-1 * | [ | |||
Aspergillus niger | pAnGlaA | anti-DEC205 scFv | 54 mg∙L-1 * | [ | |
Aspergillus oryzae | phlACB | Nbs | 0.61 g∙L-1 * | [ |
表3
基于基因工程抗体的免疫分析策略在农业食品安全危害物监测中应用及代表性实例"
免疫分析策略 Immunoassay strategy | 检测对象 Testing objects* | 检测实效Detection effectiveness | 参考文献 Reference | |||
---|---|---|---|---|---|---|
灵敏度 LOD | 线性范围 LDR | |||||
酶联免疫分析ELISA | IC-ELISA | 重金属 Heavy metal | 铀 Uranium (scFv) | 2.2 nM | - | [ |
农药 Pesticides | 有机磷类农药 Organophosphorus pesticides (scFv) | 4.1-17.6 ng∙mL-1 | - | [ | ||
甲基对硫磷 Parathion-methyl (scFv) | 0.9 ng∙mL-1 | - | [ | |||
拟除虫菊酯Pyrethroid (scFv) | 0.05 μg∙mL-1 | 0.15—2.64 μg∙mL-1 | [ | |||
胺甲萘Carbaryl (bispecific-Nbs) | 0.8 ng∙mL-1 | 2.1—270.9 ng∙mL-1 | [ | |||
呋喃丹Carbofuran (Nbs) | 0.65 ng∙mL-1 | 1.44—30.39 ng∙mL-1 | [ | |||
百草敌Dicamba (Nbs) | - | 0.11—8.01μg∙mL-1 | [ | |||
Bt Cry1F (scFv) | 0.18 ng∙mL-1 | 0.92—107.36 ng∙mL-1 | [ | |||
兽药 Veterinary drugs | 氯霉素Chloramphenicol (scFv) | 1.11 ng∙mL-1 | - | [ | ||
庆大霉素Gentamicin (scFv) | 0.147 ng∙mL-1 | 0.14—204.16 ng∙mL-1 | [ | |||
环丙沙星Ciprofloxacin (scFv) | - | 5.68—201.55 ng∙mL-1 | [ | |||
沙氟沙星Sarafloxacin (scFv) | 0.3 ng∙mL-1 | - | [ | |||
恩诺沙星Enrofloxacin (Nbs) | 0.975 ng∙mL-1 | - | [ | |||
泰乐菌素Tylosin (scFv) | 7.1 μg∙kg- | - | [ | |||
19-去甲睾酮 19-nortestosterone (Nbs) | 0.1 ng∙mL-1 | - | [ | |||
真菌毒素 Fungal-toxins | 赭曲霉 Ochratoxin A (Nbs** & mAb) | 0.001μg∙mL-1 | 0.027—0.653μg∙mL-1 | [ | ||
黄曲霉毒素 Aflatoxins(Nbs** & mAb) | 0.015 ng∙mL-1 | 0.018—0.079 ng∙mL-1 | [ | |||
黄曲霉毒素Aflatoxins (rFab) | 12 ng∙mL-1 | - | [ | |||
呕吐毒素 Deoxynivalenol (Nbs** & mAb) | 1.16 ng∙mL-1 | 2.18—62.25 ng∙mL-1 | [ | |||
呕吐毒素 Deoxynivalenol (scFv** & mAb) | <77.7 ng∙mL-1 | - | [ | |||
稻曲病毒素Ustilaginoidins (Nbs) | - | 1.17—32.13μg∙mL-1 | [ | |||
青霉菌毒素Citreoviridin (scFv) | 14.7 ng∙mL-1 | 25—562 ng∙mL-1 | [ | |||
桔霉毒素Citrinin (Nbs** & mAb) | - | 5—300 ng∙mL-1 | [ | |||
食源性致病微生物Food-borne pathogenic microorganisms | 猪2型环状病毒 PCV2 (Nbs) | 0.05μg∙mL-1 | - | [ | ||
其他危害物 Other hazards | 蘑菇毒伞肽Amatoxins (scFv) | 1.91 ng∙mL-1 | - | [ | ||
海豚毒素Citreoviridin (scFv) | 14.7 ng∙mL-1 | 25—562 ng∙mL-1 | [ | |||
微囊藻毒素 MC-LR (Nbs** & mAb) | 0.8 ng∙mL-1 | 1.2—6.9 ng∙mL-1 | [ | |||
膝沟藻毒Gonyautoxin (rFab) | 0.7 ng∙mL-1 | - | [ | |||
杏仁过敏原 Almond allergens (scFv) | 40 ng∙mL-1 | - | [ | |||
DAS-ELISA | 农药 Pesticides | Bt Cry1Ab (scFv & pAbs) | 0.008μg∙mL-1 | 0.018—6.230μg∙mL-1 | [ | |
Bt Cry1Ac (Nbs & Nbs) | 5 ng∙mL-1 | 10—1000 ng∙mL-1 | [ | |||
真菌毒素 Fungal-toxins | 交链孢霉毒素TeA Alternaria TeA (sdAb & sdAb) | 0.08 ng∙mL-1 | 0.26—25.90 ng∙mL-1 | [ | ||
食源性致病微生物 及其代谢毒素 Food-borne pathogenic microorganisms and their metabolizing toxins | 金黄色葡萄球菌 S. aureus (Nbs & Nbs) | 1.4×105 CFU∙mL-1 | 104—105 CFU∙mL-1 | [ | ||
沙门氏菌 Salmonella (Nbs & Nbs) | 4.23-9.15×103 CFU∙mL-1 | 103—107 CFU∙mL-1 | [ | |||
李斯特菌 Listeria monocytogenes (Nbs & mAb) | 1×104 CFU∙mL-1 | - | [ | |||
霉菌Aspergillus (Nbs & pAbs) | 1μg∙mL-1 | - | [ | |||
葡萄球菌肠毒素 A Staphylococcal enterotoxin A (Nbs & Nbs) | 0.43 ng∙mL-1 | 0.5—512.0 ng∙mL-1 | [ | |||
肉毒杆菌ε毒素 Clostridium botulinum ε-toxin (rFab & mAb) | 100 ng∙mL-1 | - | [ | |||
H7N2禽流感病毒 H7N2-AIV (Nbs & Nbs) | 2.946 ng∙mL-1 | 5—100 ng∙mL-1 | [ | |||
锦鲤疱疹病毒 Koi herpesvirus (scFv & scFv) | 5 ng∙μL-1 | - | [ | |||
柑橘衰退病毒CTV (scFv & scFv) | 0.01μg CP∙mL-1 | - | [ | |||
其他危害物 Other hazards | 微囊藻毒素MC-LR (sdAb & sdAb) | 0.14 nM | 0.14—10000 nM | [ | ||
膝沟藻毒 Gonyautoxin (sdAb & sdAb) | 0.5 ng∙mL-1 | 0.1->1000 ng∙mL-1 | [ | |||
侧流向免疫分析LFIA | Biotin & SA-AuNPs-LFIA | 农药Pesticides | 腐霉利 Procymidone (Nbs & mAb) | 0.88 ng∙mL-1 | - | [ |
Au@Pt-LFIA | 3-苯氧基苯甲酸 3-PBA (Nbs & mAb) | 0.005 ng∙mL-1 | - | [ | ||
TRFM-LFIA | 噻虫啉Thiacloprid (scFv & mAb) | 0.003 ng∙mL-1 | 0.01-10 ng∙mL-1 | [ | ||
eGFP-AcmA@BMC-LFIA | 兽药 Veterinary drugs | 氟甲砜霉素 Florfenicol (scFv&mAb) | 0.21 pg∙mL-1 | - | [ | |
Colloidal AuNPs-LFIA | 真菌毒素 Fungal-toxins | 伏马毒素Fumonisin B1 (scFv@mAb) | 2.5 ng∙mL-1 | - | [ | |
Avi/SA@QDs-LFIA | 黄曲霉毒素 Aflatoxin B1 (Nbs & mAb) | 1.25 ng∙mL-1 | - | [ | ||
GFP-LFIA | 黄曲霉毒Aflatoxin B1 (Nbs & mAb) | 4.8 ng∙mL-1 | - | [ | ||
AuCPNs@PDA- photothermal-LFIA | 食源性致病微 生物代谢毒 Food-borne pathogenic microorganisms and their metabolizing toxins | 葡萄球菌肠毒素B Staphylococcal enterotoxin B (Nbs & mAb) | 0.58 ng∙mL-1 | - | [ | |
Colloidal AuNPs-LFIA | 其他危害物 Other hazards | 毒伞肽Amatoxins (scFv & mAb) | 4 ng∙mL-1 | - | [ | |
AuMBA@AgNPs-CM/ SERS-LFIA | 甲壳类过敏原原肌球蛋白 Crustacean allergen tropomyosin (Nbs & mAb) | 0.01 μg∙mL-1 | - | [ | ||
荧光免疫分析 FLIA | ALP-dc-FEIA | 农药 Pesticides | 对硫磷Parathion (Nbs) | 0.2 ng∙mL-1 | - | [ |
Rhodamine based FLIA | 吡虫啉Imidacloprid (rFab) | 10 ng∙mL-1 | - | [ | ||
IC-TRFIA | Cry1Ie (scFv) | 0.04 ng∙mL-1 | 0.08—6.44 ng∙mL-1 | [ | ||
QDs-FLISA | Cry2A (Nbs & pAbs) | 0.41 ng∙mL-1 | 2.6—1000 ng∙mL-1 | [ | ||
QDs-FLISA | Cry3Bb (Nbs & Nbs) | 8.45 ng∙mL-1 | 31.25—500 ng∙mL-1 | [ | ||
GFP-FLIA | 阿维菌素Avermectin (scFv) | 1.07 ng∙mL-1 | - | [ | ||
HCR & CRISPR/ Cas12a-FLIA | 兽药 Veterinary drugs | 氯霉素 Chloramphenicol (scFv) | 3.31 pg∙mL-1 | 3.81 pg∙mL-1—1 μg∙mL-1 | [ | |
Nanoluciferase (Nluc)-FLIA | 真菌毒素 Fungal-toxins | 交链孢霉毒素TeA Alternaria-TeA(Nbs** & mAb) | 0.7 ng∙mL-1 | - | [ | |
ALP-FLIA | 黄曲霉毒素 Aflatoxins (Nbs** & mAb) | 0.005—100 ng∙mL-1 | [ | |||
Resonance energy transfer- FLIA | 赭曲霉 Ochratoxin A/B (Nbs-mAb) | 0.06/0.12 ng∙mL-1 | 0.25—20 ng∙mL-1 | [ | ||
MBs&OPD/DAP-FLIA | 食源性致病微生物Food-borne pathogenic microorganisms | 大肠杆菌 E. coli F17 (Nb s& Nbs) | 1.8 CFU∙mL-1 | 101—109 CFU∙mL-1 | [ | |
化学发光免疫分析CLIA | AS@HRP-IC-CLIA | 农药 Pesticides | 二嗪农Diazinon (Nbs) | 0.03 ng∙mL-1 | 0.12—25.96 ng∙mL-1 | [ |
HRP@luminol-DAS-CLIA | Bt Cry2A (pAbs-Nbs) | 0.09 ng∙mL-1 | 0.1—1000 ng∙mL-1 | [ | ||
HRP@luminol-IC-CLIA | Bt Cry1Ab (mAb-Nbs**) | 6.45 ng∙mL-1 | 10.49—307.1 ng∙mL-1. | [ | ||
ALP@AMPPD-IC-CLIA | 兽药 Veterinary drugs | 庆大霉素Gentamicin (scFv) | 0.38 ng∙mL-1 | 0.546—3.428 ng∙mL-1 | [ | |
ALP@AMPPD-IC-CLIA | 孔雀石绿Malachite green (scFv) | 0.04 ng∙mL-1 | 0.09—11.5 ng∙mL-1 | [ | ||
HRP@luminol-IC-CLIA | 诺氟沙星Norfloxacin (scFv) | 0.105μg∙kg-1 | - | [ | ||
ALP@CSPD-CLIA | 真菌毒素 Fungal-toxins | 伏马毒素 Fumonisin B1 (Nbs** & mAb) | 0.12 ng∙mL-1 | 0.93—7.73 ng∙mL-1 | [ | |
HRP@luminol-DAS-CLIA | 食源性致病微生物及其代谢毒 Food-borne pathogenic microorganisms and their metabolizing toxins | 克罗诺杆菌 Cronobacter sakazakii (Nbs & Nbs) | 1.04×104 CFU∙mL-1 | - | [ | |
HRP@luminol-DAS-CLIA | 鼠伤寒沙门氏菌 Salmonella Typhimurium (Nbs & Nbs) | 3.63×103 CFU∙mL-1 | 5.1×103—1.2×106 CFU∙mL-1 | [ | ||
ALP@AMPPD-DAS-CLIA | 葡萄球菌肠毒素-B Staphylococcal enterotoxin-B (Nbs & mAb) | 1.44 ng∙mL-1 | 3.12—50 ng∙mL-1 | [ | ||
(光)电化学免疫分析(P) ECLIA | PVA-CA-NFM@HRP-ECLIA | 农药 Pesticides | 对硫磷Parathion (Nbs) | 2.26 pg∙mL-1 | 0.01—100 pg∙mL-1 | [ |
ATTO520 -PECLIA | 喹硫磷Quinalphos (Nbs) | 7 ng∙mL-1 | - | [ | ||
EDC/NHS@HRP-ECLIA | Bt Cry1Ab (Nbs & Nbs) | 0.07 ng∙mL-1 | 0.1—1000 ng∙mL-1 | [ | ||
GO-Th@GCE-ECLIA | Bt Cry1C (Nbs & Nbs) | 3.2 pg∙mL-1 | 0.01—100 pg∙mL-1 | [ | ||
IMBs@HRP-ECLIA | 真菌毒素 Fungal-toxins | 呕吐毒素Deoxynivalenol (rFab) | 63 ng∙mL-1 | 100—4500 ng∙mL-1 | [ | |
SPCEs@HRP-ECLIA | 黄曲霉毒素 Aflatoxin M1 (Nbs** & mAb) | 0.09 ng∙mL-1 | 0.25—5 ng∙mL-1 | [ | ||
HRP-ECLIA | 其他危害物 Other hazards | 丙烯酰胺Acrylamide (Nbs) | 0.033μg∙mL-1 | 0.39—50 μg∙mL-1 | [ | |
SA & ALP-ECLIA | 花生过敏原Ara h1 Peanut allergen Ara h1 (Nbs) | 0.86 ng∙mL-1 | 4.5—55 ng∙mL-1 | [ | ||
表面等离子共振免疫分析 SPRIA | Sensor chip CM5-SPRIA | 真菌毒素 Fungal-toxins | 玉米赤霉烯酮 Zearalenone (scFv) | 7.8 ng∙mL-1 | - | [ |
AuNPs-SPRIA | 食源性致病微生物Food-borne pathogenic microorganisms | 副溶血弧菌 Vibrio parahaemolyticus (Nbs) | 103 CFU∙mL-1 | - | [ | |
2-carboxyethyl-SPRIA | 肠炎沙门氏菌 Salmonella Enteritidis (rFab) | - | 103—108 CFU∙mL-1 | [ | ||
Sensor chip CM5-SPRIA | 其他危害物 Other hazards | 蘑菇毒伞肽 Amatoxins (scFv) | 0.17 ng∙mL-1 | 0.554—44.7 ng∙mL-1 | [ | |
免疫PCR IM-PCR | IM-PCR | 农药Pesticides | Bt Cry1Ac (Nbs) | 0.1 pg∙mL-1 | 0.001—100 pg∙mL-1 | [ |
PD-IM-PCR | 真菌毒素 Fungal-toxins | 玉米赤霉烯酮 Zearalenone (Nbs** & mAb) | 6.5 pg∙mL-1 | 0.01—100 pg∙mL-1 | [ | |
rt-IM-PCR | 桔霉毒素 Citrinin (Nbs** & mAb) | 0.08 ng∙mL-1 | 0.1—1000 ng∙mL-1 | [ | ||
IM-PCR | 赭曲霉毒素 Ochratoxin A (Nbs** & mAb) | 4.17 pg∙mL-1 | 0.01—1000 pg∙mL-1 | [ |
[1] |
doi: 10.1080/19420862.2018.1468952 pmid: 29708852 |
[2] |
doi: 10.1111/1541-4337.13018 pmid: 35904244 |
[3] |
|
[4] |
doi: 10.2147/IJN.S107194 pmid: 27499623 |
[5] |
|
[6] |
|
[7] |
陈遥, 舒星富, 赵钰, 张博文, 马忠仁, 张海霞. 单链抗体展示系统研究进展. 生物工程学报, 2023, 39(9): 3681-3694.
|
|
|
[8] |
刘媛, 林曼曼, 张霄, 徐重新, 焦凌霞, 仲建锋, 武爱华, 刘贤金. 基因突变技术在抗体亲和力体外成熟中的应用. 浙江大学学报(农业与生命科学版), 2016, 42(1): 1-7.
|
|
|
[9] |
doi: 10.1007/s12033-011-9398-2 pmid: 21465334 |
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
doi: S1871-6784(18)30052-9 pmid: 29689305 |
[16] |
|
[17] |
|
[18] |
|
[19] |
doi: 10.1021/ac200159x pmid: 21473651 |
[20] |
doi: 10.1007/s00216-016-9760-0 pmid: 27411546 |
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
pmid: 27622814 |
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
doi: 10.1021/acs.jafc.7b04923 pmid: 29293334 |
[32] |
|
[33] |
doi: 10.1021/acs.jafc.6b02978 pmid: 27684201 |
[34] |
徐重新, 刘媛, 张霄, 刘贤金. Bt Cry毒素抗虫模拟物靶向创新设计. 生物工程学报, 2023, 39(2): 446-458.
|
|
|
[35] |
|
[36] |
|
[37] |
doi: 10.3109/1040841X.2016.1150959 pmid: 27387055 |
[38] |
|
[39] |
|
[40] |
|
[41] |
doi: S0039-9140(19)30066-9 pmid: 30771953 |
[42] |
|
[43] |
|
[44] |
|
[45] |
pmid: 17406305 |
[46] |
doi: 10.1016/j.abb.2012.03.009 pmid: 22450168 |
[47] |
|
[48] |
doi: 10.1007/s00018-012-1179-y pmid: 23064703 |
[49] |
|
[50] |
|
[51] |
doi: 10.4161/mabs.2.5.12970 pmid: 20716968 |
[52] |
|
[53] |
|
[54] |
|
[55] |
doi: 10.1007/s00253-017-8347-9 pmid: 28601895 |
[56] |
doi: 10.1007/s00894-020-4286-y pmid: 32020367 |
[57] |
doi: S0022-1759(18)30332-6 pmid: 30321550 |
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
doi: S0003-2697(16)30356-6 pmid: 27780696 |
[65] |
doi: S0141-8130(20)30424-4 pmid: 32084462 |
[66] |
|
[67] |
doi: 10.1038/s41598-018-35464-7 pmid: 30514850 |
[68] |
|
[69] |
doi: 10.1021/acs.jafc.8b01141 pmid: 29781609 |
[70] |
doi: 10.1016/j.ab.2010.11.009 pmid: 21078281 |
[71] |
|
[72] |
秦秀林, 钱江潮, 储炬. 优化易错PCR条件以提高毕赤酵母GAP启动子文库突变效率. 生物技术通报, 2014, 30(6): 211-217.
|
|
|
[73] |
VAN DEN BEUCKEN T,
|
[74] |
|
[75] |
doi: 10.1038/leu.2015.125 pmid: 25987253 |
[76] |
|
[77] |
doi: 10.1038/s41598-020-71037-3 pmid: 32839506 |
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
doi: 10.1186/s12896-018-0466-6 pmid: 30200951 |
[83] |
|
[84] |
doi: 10.1080/19420862.2015.1088618 pmid: 26337947 |
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
doi: 10.3389/fimmu.2017.00986 pmid: 28928732 |
[90] |
doi: 10.1089/mab.2019.0027 pmid: 31411543 |
[91] |
|
[92] |
|
[93] |
|
[94] |
doi: 10.1038/s41598-019-41567-6 pmid: 30911061 |
[95] |
doi: 10.1021/acs.jafc.6b03356 pmid: 27718569 |
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
doi: 10.4161/mabs.3.5.17228 pmid: 22048691 |
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
doi: 10.1016/j.apsb.2019.02.007 pmid: 31649846 |
[111] |
doi: 10.1074/jbc.M115.688010 pmid: 26515064 |
[112] |
|
[113] |
|
[114] |
doi: 10.1038/s41598-023-32022-8 pmid: 36966210 |
[115] |
doi: S0147-6513(18)30005-8 pmid: 29353171 |
[116] |
|
[117] |
pmid: 11771962 |
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
doi: 10.1016/j.nbt.2023.01.001 pmid: 36603701 |
[127] |
|
[128] |
|
[129] |
|
[130] |
|
[131] |
|
[132] |
|
[133] |
|
[134] |
|
[135] |
doi: S0165-2478(16)30229-2 pmid: 27984065 |
[136] |
|
[137] |
|
[138] |
doi: S1046-5928(17)30017-7 pmid: 28214589 |
[139] |
|
[140] |
doi: 10.1016/j.jmb.2014.11.017 pmid: 25481745 |
[141] |
|
[142] |
|
[143] |
刘爱平, 李诚, 刘书亮, 王小红, 陈福生. 抗黄曲霉毒素B1单链抗体在Sf9昆虫细胞中的表达与性质分析. 中国生物工程杂志, 2016, 36(5): 40-45.
|
|
|
[144] |
刘蕊, 项丹丹, 刘鹏琰, 梁晓, 郭逸蓉, 朱国念. 抗对硫磷单链抗体在昆虫细胞中的表达及活性鉴定. 农药学学报, 2016, 18(2): 177-184.
|
|
|
[145] |
doi: S1389-1723(17)30123-8 pmid: 28410897 |
[146] |
doi: 10.1111/j.1467-7652.2008.00371.x pmid: 18793269 |
[147] |
|
[148] |
|
[149] |
|
[150] |
|
[151] |
|
[152] |
doi: 10.1016/j.talanta.2013.05.012 pmid: 24054599 |
[153] |
|
[154] |
|
[155] |
|
[156] |
|
[157] |
doi: 10.1007/s00253-020-10728-3 pmid: 32666189 |
[158] |
|
[159] |
|
[160] |
|
[161] |
|
[162] |
|
[163] |
|
[164] |
|
[165] |
|
[166] |
|
[167] |
|
[168] |
|
[169] |
|
[170] |
|
[171] |
|
[172] |
doi: 10.1007/s00216-018-1074-y pmid: 29704031 |
[173] |
|
[174] |
|
[175] |
|
[176] |
|
[177] |
|
[178] |
|
[179] |
|
[180] |
doi: S0003-2670(16)30403-2 pmid: 27181644 |
[181] |
|
[182] |
|
[183] |
|
[184] |
|
[185] |
|
[186] |
|
[187] |
|
[188] |
pmid: 27617345 |
[189] |
|
[190] |
|
[191] |
|
[192] |
|
[193] |
doi: 10.1111/pbi.12819 pmid: 28796912 |
[194] |
|
[195] |
|
[196] |
徐重新, 金嘉凤, 孙晓明, 沈成, 张霄, 陈澄宇, 刘贤金, 刘媛. 基于Bt毒素的杀虫蛋白理性设计与创新应用策略. 中国农业科学, 2024, 57(1): 96-125. doi: 10.3864/j.issn.0578-1752.2024.01.008.
|
|
|
[197] |
|
[198] |
|
[199] |
|
[200] |
|
[201] |
doi: S1046-5928(16)30083-3 pmid: 27181246 |
[202] |
|
[203] |
|
[204] |
doi: 10.1021/acs.analchem.6b00426 pmid: 26980703 |
[205] |
|
[206] |
|
[207] |
doi: 10.1007/s00216-016-9370-x pmid: 27002610 |
[208] |
|
[209] |
|
[210] |
doi: 10.1007/s00216-015-8693-3 pmid: 25910884 |
[211] |
doi: 10.1016/j.aca.2013.07.024 pmid: 23953213 |
[212] |
|
[213] |
|
[214] |
|
[215] |
|
[216] |
doi: 10.1016/j.ab.2015.09.020 pmid: 26450565 |
[217] |
|
[218] |
|
[219] |
|
[220] |
|
[221] |
|
[222] |
|
[223] |
|
[224] |
doi: 10.1007/s00216-013-7174-9 pmid: 23842902 |
[225] |
|
[226] |
|
[227] |
doi: 10.1021/acs.jafc.2c01872 pmid: 35819336 |
[228] |
|
[229] |
|
[230] |
|
[231] |
刘媛,
|
|
|
[232] |
|
[233] |
doi: 10.2144/btn-2020-0155 pmid: 33467890 |
[234] |
林伟琦. 食品安全快速检测技术的应用研究进展. 食品安全质量检测学报, 2020, 11(3): 961-967.
|
|
[1] | 徐重新, 金嘉凤, 孙晓明, 沈成, 张霄, 陈澄宇, 刘贤金, 刘媛. 基于Bt毒素的杀虫蛋白理性设计与创新应用策略[J]. 中国农业科学, 2024, 57(1): 96-125. |
[2] | 芮玉奎,王保民. 转基因抗虫作物中豇豆胰蛋白酶抑制剂(CpTI)酶联免疫检测方法的建立[J]. 中国农业科学, 2004, 37(10): 1575-1579 . |
|