[1] |
AMAIKE S, KELLER N P . Aspergillus flavus. Annual Review of Phytopathology, 2011,49:107-133.
|
[2] |
WALIYAR F, UMEH V C, TRAORE A, OSIRU M, NTARE B R, DIARRA B, KODIO O, VIJAY KRISHNA KUMAR K, SUDINI H . Prevalence and distribution of aflatoxin contamination in groundnut (Arachis hypogaea L.) in Mali, West Africa. Crop Protection, 2015,70:1-7.
|
[3] |
ASTERS M C, WILLIAMS W P, PERKINS A D, MYLROIE J E, WINDHAM G L, SHAN X . Relating significance and relations of differentially expressed genes in response to Aspergillus flavus infection in maize. Scientific Reports, 2014,4:4815.
|
[4] |
MICHAILIDES T, THOMIDIS T . First report of Aspergillus flavus causing fruit rots of peaches in Greece. Plant Pathology, 2007,56(2):352.
|
[5] |
WILLIAMS J H, PHILLIPS T D, JOLLY P E, STILES J K, JOLLY C M, AGGARWAL D . Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition, 2004,80(5):1106-1122.
|
[6] |
WU F . Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin Journal, 2015,8(2):137-142.
|
[7] |
周守长 . 鸭饲料中黄曲霉毒素B1污染的流行病学调查、致病作用及其防治方法研究[D]. 扬州: 扬州大学, 2016.
|
|
ZHOU S Z . Epidemiological investigation, pathogenicity and prevention of contamination of aflatoxin B1 in duck feeds[D]. Yangzhou: Yangzhou University, 2016. (in Chinese)
|
[8] |
LEE H J, RYU D . Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 2017,65(33):7034-7051.
|
[9] |
CHEN J G, EGNER P A, NG D, JACOBSON L P, MUNOZ A, ZHU Y R, QIAN G S, WU F, YUAN J M, GROOPMAN J D, KENSLER T W . Reduced aflatoxin exposure presages decline in liver cancer mortality in an endemic region of China. Cancer Prevention Research, 2013,6(10):1038-1045.
|
[10] |
The European Commission. Commission Regulation (EU) No. 165/2010 of 26 February 2010, amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxin. Official Journal of the European Union, 2010: L50/8-L50/12.
|
[11] |
TORRES A M, BARROS G G, PALACIOS S A, CHULZE S N, BATTILANI P . Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Research International, 2014,62:11-19.
|
[12] |
WAGACHA J M, MUTEGI C, KARANJA L, KIMANI J, CHRISTIE M E . Fungal species isolated from peanuts in major Kenyan markets: Emphasis on Aspergillus section Flavi. Crop Protection, 2013,52:1-9.
|
[13] |
LEONG Y H, ISMAIL N, LATIF A A, AHMAD R . Aflatoxin occurrence in nuts and commercial nutty products in Malaysia. Food Control, 2010,21(3):334-338.
|
[14] |
宫安东 . 镰刀菌和黄曲霉菌生防菌的分离及拮抗机理的研究[D]. 武汉: 华中农业大学, 2015.
|
|
GONG A D . Isolation and antagonistic mechanism analyses of biocontrol agents against Fusarium and Aspergillus species[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
|
[15] |
国家食品药品监督管理总局. 食品安全国家标准. 食品中真菌毒素限量: GB 2761—2017. (2017-09-17) [2019-04-18].
|
|
China Food and Drug Administration. National standards for food safety. Mycotoxin limits in food: GB 2761—2017. (2017-09-17) [2019-04-18]. (in Chinese)
|
[16] |
BEDIAKO K A, OFORI K, OFFEI S K, DZIDZIENYO D, ASIBUO J Y, AMOAH R A . Aflatoxin contamination of groundnut (Arachis hypogaea L.): Predisposing factors and management interventions. Food Control, 2019,98:61-67.
|
[17] |
PASSONE M A, ETCHEVERRY M . Antifungal impact of volatile fractions of Peumus boldus and Lippia turbinata on Aspergillus section Flavi and residual levels of these oils in irradiated peanut. International Journal of Food Microbiology, 2014,168/169:17-23.
|
[18] |
KEDIA A, PRAKASH B, MISHRA P K, DUBEY N K .Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. International Journal of Food Microbiology, 2014,168/169:1-7.
|
[19] |
PRAKASH B, KEDIA A, MISHRA P K, DUBEY N K . Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities-Potentials and challenges. Food Control, 2015,47:381-391.
|
[20] |
EHRLICH K C . Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Frontiers in Microbiology, 2014,5:50.
|
[21] |
KONG Q, CHI C, YU J J, SHAN S H, LI Q Y, LI Q T, GUAN B, NIERMAN W C, BENNETT J W . The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus. Applied Microbiology and Biotechnology, 2014,98(11):5161-5172.
|
[22] |
GONG A D, LI H P, SHEN L, ZHANG J B, WU A B, HE W J, YUAN Q S, HE J D, LIAO Y C . The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Frontiers in Microbiology, 2015,6:1091.
|
[23] |
WARTH B, SULYOK M, FRUHMANN P, MIKULA H, BERTHILLER F, SCHUHMACHER R, HAMETNER C, ABIA W A, ADAM G, FROHLICH J, KRSKA R . Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Communications in Mass Spectrometry, 2012,26(13):1533-1540.
|
[24] |
宫安东, 韩萌真, 孔宪巍, 魏彦博, 王磊, 程琳 . 茶树内生菌的应用性研究进展. 信阳师范学院学报 (自然科学版), 2017,30(1):168-172.
|
|
GONG A D, HAN M Z, KONG X W, WEI Y B, WANG L, CHENG L . Application analysis of endophytic microbes in Camellia sinensis. Journal of Xinyang Normal University (Natural Science Edition), 2017,30(1):168-172. (in Chinese)
|
[25] |
BOUKAEW S, PLUBRUKAM A, PRASERTSAN P . Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl, 2013,58(4):471-482.
|
[26] |
GOTOR-VILA A, TEIXIDÓ N, DI FRANCESCO A, USALL J, UGOLINI L, TORRES R, MARI M . Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiology, 2017,64:219-225.
|
[27] |
MACÍAS-RUBALCAVA M L, SÁNCHEZ-FERNÁNDEZ R E, ROQUE-FLORES G, LAPPE-OLIVERAS P, MEDINA-ROMERO Y M . Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiology, 2018,76:363-373.
|
[28] |
王静, 曹建敏, 陈德鑫, 邱军, 王晓强, 冯超, 王文静 . 短小芽孢杆菌AR03挥发性有机物的抑菌活性及其组分分析. 中国农业科学, 2018,51(10):1908-1919.
doi: 10.3864/j.issn.0578-1752.2018.10.010
|
|
WANG J, CAO J M, CHEN D X, QIU J, WANG X Q, FENG C, WANG W J . Antimicrobial effect and components analysis of volatile organic compounds from Bacillus pumilus AR03. Scientia Agricultura Sinica, 2018,51(10):1908-1919. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.10.010
|
[29] |
ZHANG Y, LI T J, LIU Y F, LI X Y, ZHANG C M, FENG Z Z, PENG X, LI Z Y, QIN S, XING K . Volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. Journal of Agricultural and Food Chemistry, 2019,67(13):3702-3710.
|
[30] |
ROJAS-ROJAS F U, SALAZAR-GOMEZ A, VARGAS-DIAZ M E, VASQUEZ-MURRIETA M S, HIRSCH A M, DE MOT R, GHEQUIRE M G K, IBARRA J A, ESTRADA-DE LOS SANTOS P . Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology, 2018,164(9):1072-1086.
|
[31] |
LEMTUKEI D, TAMURA T, NGUYEN Q T, UENO M . Inhibitory activity of Burkholderia sp. isolated from soil in Gotsu City, Shimane, against Magnaporthe oryzae. Advances in Microbiology, 2017,7(2):137-148.
|
[32] |
REN J H, YE J R, LIU H, XU X L, WU X Q . Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent. World Journal of Microbiology and Biotechnology, 2011,27(9):2203-2215.
|
[33] |
WALLACE P, MAHAFFEE W F, PRESS C M, LARSEN M M, NEILL T M . The relationship of biofilm production to biocontrol activity of Burkholderia pyrrocinia FP62//American Phytopathological Society Abstracts, 2009: 569.
|
[34] |
刘肖 . 花生储藏过程中水活度、温度对黄曲霉生长和产毒的影响[D]. 北京: 中国农业科学院, 2016.
|
|
LIU X . Impact of water activity and temperature on Aspergillus flavus growth and aflatoxin production in stored peanuts[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
|
[35] |
KAI M, EFFMERT U, BERG G, PIECHULLA B . Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 2007,187(5):351-360.
|
[36] |
MA W B, ZHAO L L, XIE Y L . Inhibitory effect of (E)-2-hexenal as a potential natural fumigant on Aspergillus flavus in stored peanut seeds. Industrial Crops and Products, 2017,107:206-210.
|
[37] |
HUA S S T, BECK J J, SARREAL S B L, GEE W . The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Research, 2014,30(2):71-78.
|
[38] |
PAPAZLATANI C, ROUSIDOU C, KATSOULA A, KOLYVAS M, GENITSARIS S, PAPADOPOULOU K K, KARPOUZAS D G . Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils. European Journal of Plant Pathology, 2016,146(2):391-400.
|
[39] |
PIECHULLA B, LEMFACK M C, KAI M . Effects of discrete bioactive microbial volatiles on plants and fungi. Plant, Cell and Environment, 2017,40(10):2042-2067.
|