中国农业科学 ›› 2018, Vol. 51 ›› Issue (10): 1960-1971.doi: 10.3864/j.issn.0578-1752.2018.10.015
石江鹏1(), 张春芬2, 邓舒2, 侯丽媛3, 肖蓉2, 李芙蓉1, 董艳辉3, 聂园军4, 王亦学3, 曹秋芬1,3()
收稿日期:
2017-10-11
接受日期:
2017-12-10
出版日期:
2018-05-16
发布日期:
2018-05-16
联系方式:
联系方式:石江鹏,E-mail:425323239@163.com。
基金资助:
JiangPeng SHI1(), ChunFen ZHANG2, Shu DENG2, LiYuan HOU3, Rong XIAO2, FuRong LI1, YanHui DONG3, YuanJun NIE4, YiXue WANG3, QiuFen CAO1,3()
Received:
2017-10-11
Accepted:
2017-12-10
Published:
2018-05-16
Online:
2018-05-16
摘要:
目的 苹果花药培养获得的纯合基因型株系来自不同的花粉粒,因此不同株系的植物学特征、生物学特性,以及诱导培养、生根的条件等都存在差异。本研究对不同个株系试管苗的倍性、表型特征、生根培养条件进行观察分析,选出苹果纯合基因型株系适宜的生根条件及综合性状较好的株系,加强苹果种质资源创新。方法 采用花药培养获得的‘嘎啦’‘富士’‘红星’纯合基因型株系,利用流式细胞仪分析每个株系倍性,探索组培苗的生根培养条件,观察每个株系的根系、叶片形态特征。结果 经苹果花药培养获得32个纯合基因型株系,其中单倍体1株、三倍体1株、四倍体3株、二倍体27株,‘红星’苹果纯合基因型株系的倍性分化率最大,为28.57%。IBA浓度影响再生株系的生根率、根长及根数,苹果纯合基因型株系的最适宜生根浓度为IBA 2—3 mg·L-1。各个株系的叶数、根长、根数、株高、叶形指数(叶长度/叶宽度)、叶柄有一定差异。‘红星’纯合基因型DH0-1、DH0-3、DH0-4、DH0-7株系,‘富士’纯合基因型DH1-3株系,‘嘎啦’纯合基因型DH2-2、DH2-4、DH2-12、DH2-20株系综合性状较好(植株高、根系长、叶数和根数多)。‘红星’纯合基因型株系的移栽成活率最高,为28.57%。结论 苹果纯合基因型株系的主要倍性为二倍体。与二倍体株系相比,单倍体株系叶基窄、叶柄细、叶色和叶缘锯齿较浅,而多倍体株系表现为叶基更阔、叶柄较粗、叶色和叶缘锯齿变深。
石江鹏, 张春芬, 邓舒, 侯丽媛, 肖蓉, 李芙蓉, 董艳辉, 聂园军, 王亦学, 曹秋芬. 苹果纯合基因型新种质的性状鉴定与培养[J]. 中国农业科学, 2018, 51(10): 1960-1971.
JiangPeng SHI, ChunFen ZHANG, Shu DENG, LiYuan HOU, Rong XIAO, FuRong LI, YanHui DONG, YuanJun NIE, YiXue WANG, QiuFen CAO. Morphological Identification and Cultivation of New Germplasm of Apple Homozygous Genotypes[J]. Scientia Agricultura Sinica, 2018, 51(10): 1960-1971.
表1
‘红星’‘富士’‘嘎啦’苹果纯合基因型株系倍性"
红星株系 Red star strain | 倍性 Ploidy | 富士株系 Fuji strain | 倍性 Ploidy | 嘎啦株系 Gala strains | 倍性 Ploidy | 嘎啦株系 Gala strains | 倍性 Ploidy | 嘎啦株系 Gala strains | 倍性 Ploidy | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DH0-1 | 2n | DH1-1 | 2n | DH2-1 | 2n | DH2-8 | 2n | DH2-15 | 4n | ||||
DH0-2 | 2n | DH1-2 | 4n | DH2-2 | 2n | DH2-9 | 2n | DH2-16 | 2n | ||||
DH0-3 | 2n | DH1-3 | 2n | DH2-3 | 1n | DH2-10 | 2n | DH2-17 | 2n | ||||
DH0-4 | 2n | DH1-4 | 2n | DH2-4 | 2n | DH2-11 | 2n | DH2-18 | 2n | ||||
DH0-5 | 4n | DH1-5 | 2n | DH2-5 | 2n | DH2-12 | 2n | DH2-19 | 2n | ||||
DH0-6 | 2n | DH2-6 | 2n | DH2-13 | 2n | DH2-20 | 2n | ||||||
DH0-7 | 3n | DH2-7 | 2n | DH2-14 | 2n |
表2
不同IBA浓度对‘红星’苹果纯合基因型株系根系形态的影响"
根系形态 Root morphology | 培养基 Medium | 株系 Line | ||||||
---|---|---|---|---|---|---|---|---|
DH0-1 | DH0-2 | DH0-3 | DH0-4 | DH0-5 | DH0-6 | DH0-7 | ||
生根率 Root rate (%) | T1 | 26.67 | 6.67 | 70 | 46.67 | 33.33 | 46.67 | 33.33 |
T2 | 53.33 | 86.67 | 100 | 93.33 | 86.67 | 66.67 | 100 | |
T3 | 73.33 | 73.33 | 93.33 | 93.33 | 100 | 53.33 | 66.67 | |
根长 Root length (cm/plant) | T1 | 5.70±0.81a | 4.80b | 18.13±1.53a | 3.70±1.16a | 3.50±0.58b | 3.50±0.79a | 3.90±0.56a |
T2 | 3.87±1.13a | 6.63±1.19a | 20.83±1.66a | 3.73±0.77a | 4.63±0.91b | 3.17±0.77a | 3.93±0.67a | |
T3 | 4.60±0.71a | 4.50±0.67b | 20.13±1.51a | 4.07±1.13a | 8.33±1.17a | 3.13±0.90a | 4.27±0.95a | |
根数 Root number | T1 | 7.00±1.26b | 3.00b | 5.00±1.00b | 2.33±1.05c | 3.33±0.83b | 3.33±1.32b | 1.00c |
T2 | 4.67±1.32b | 5.00±1.00a | 10.00±1.26a | 15.33±1.28a | 5.67±1.05a | 9.00±1.00a | 22.33±1.59a | |
T3 | 17.67±1.56a | 1.33±0.83c | 7.00±1.26ab | 9.33±0.83b | 6.33±1.15a | 8.67±0.83a | 12.33±1.45b |
表3
不同IBA浓度对‘富士’苹果纯合基因型株系根系形态的影响"
根系形态 Root morphology | 培养基 Medium | 株系 Line | ||||
---|---|---|---|---|---|---|
DH1-1 | DH1-2 | DH1-3 | DH1-4 | DH1-5 | ||
生根率 Root rate(%) | T1 | 53.33 | 13.33 | 26.67 | _ | _ |
T2 | 100 | 60 | 100 | 40 | 26.67 | |
T3 | 86.67 | 73.33 | 66.67 | 6.67 | 53.33 | |
根长 Root length (cm/plant) | T1 | 9.53±1.21b | 8.40±1.37b | 14.00±1.20b | _ | _ |
T2 | 17.43±1.00a | 19.67±1.41a | 21.00±1.15a | 4.47±1.31a | 4.17±1.21a | |
T3 | 8.57±1.26b | 22.27±1.63a | 18.37±1.21a | 4.5a | 7.30±1.48a | |
根数 Root number | T1 | 3.00b | 5.00±1.00b | 2.67±1.28c | _ | _ |
T2 | 18.33±1.48a | 2.00±1.00b | 26.67±1.65a | 4.00±1.38a | 3.00±1.20a | |
T3 | 17.00±1.26a | 12.33±1.28a | 18.33±1.15b | 3a | 1.33±0.83a |
表4
不同IBA浓度对‘嘎啦’苹果纯合基因型株系根系形态的影响"
根系形态 Root morphology | 培养基 Medium | 株系 Line | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DH2-1 | DH2-2 | DH2-3 | DH2-4 | DH2-5 | DH2-6 | DH2-7 | DH2-8 | DH2-9 | DH2-10 | ||
生根率 Root rate (%) | T1 | 6.67 | 100 | 20 | _ | 6.67 | 80 | 100 | 53.33 | 66.67 | 20 |
T2 | 60 | 100 | 66.67 | 100 | _ | 100 | 100 | 73.33 | 86.67 | 60 | |
T3 | 13.33 | 90 | 80 | 86.67 | 13.33 | 100 | 100 | 73.33 | 86.67 | 86.67 | |
根长 Root length (cm.plant-1) | T1 | 4.65±0.97a | 1.70±0.67b | 2.93±0.49b | _ | 5.9a | 4.27±0.88b | 0.57±0.39b | 32.60±1.05a | 9.50±1.25a | 7.53±1.31b |
T2 | 6.43±1.47a | 1.63±0.78b | 1.87±1.19b | 29.43±1.80a | _ | 8.90±1.07a | 2.50±1.02a | 30.00±1.10a | 8.93±1.25a | 8.23±1.76b | |
T3 | 1.5a | 5.77±1.17a | 13.17±1.20a | 14.83±1.40b | 5.85±1.18a | 9.40±1.15a | 3.67±0.71a | 31.33±1.28a | 10.93±1.54a | 22.10±1.31a | |
根数 Root number | T1 | 1.50±0.89b | 24.67±1.65b | 3.67±1.15a | _ | 1a | 9.33±0.83c | 16c | 9.00±1.20b | 5.67±1.45a | 1.33±0.83b |
T2 | 17.00±1.66a | 39.67±1.67ab | 1.67±0.83a | 4.00±1.38a | _ | 42.33±1.82a | 29.33±1.83b | 21.67±1.61a | 9.67±1.45a | 5.00±1.20b | |
T3 | 1b | 51.67±2.42a | 2.33±0.83a | 6.00±1.38a | 1a | 34.67±1.28b | 43.67±1.73a | 8.00±1.59b | 12.00±1.74a | 22.33±1.86a | |
根系形态 Root morphology | 培养基 Medium | 株系 Line | |||||||||
DH2-11 | DH2-12 | DH2-13 | DH2-14 | DH2-15 | DH2-16 | DH2-17 | DH2-18 | DH2-19 | DH2-20 | ||
生根率 Root rate(%) | T1 | 66.67 | 20 | 80 | 6.67 | 53.33 | _ | 6.67 | 93.33 | 73.33 | 6.67 |
T2 | 100 | 100 | 100 | 73.33 | 66.67 | 20 | 53.33 | 100 | 73.33 | 86.67 | |
T3 | 93.33 | 53.33 | 100 | 60 | 53.33 | _ | 13.33 | 100 | 93.33 | 66.67 | |
根长 Root length (cm.plant-1) | T1 | 14.5±1.62b | 12.7±1.26b | 1.33±0.69c | 4.8b | 14.27±1.46a | _ | 4.5b | 7.60±1.30c | 13.43±1.54a | 13.8a |
T2 | 20.7±1.40a | 35.27±1.78a | 3.83±1.18b | 17.33±1.63a | 10.23±1.25a | 3.43±1.02 | 11.77±1.40a | 16.10±1.72b | 14.43±1.38a | 18.40±1.57a | |
T3 | 20.7±1.40a | 23.2±1.90b | 6.27±0.96a | 6.40±1.36b | 9.80±1.26a | _ | 3.20±1.46b | 23.83±1.42a | 11.07±1.33a | 14.77±1.48a | |
根数 Root number | T1 | 3.00±1.20b | 2.33±0.83b | 11.67±0.83b | 1a | 13.67±1.36a | _ | 1b | 5.00±1.00b | 3.33±1.15b | 27c |
T2 | 10.33±1.36a | 11.33±1.15a | 18.67±1.59ab | 6.33±1.36a | 7.00±1.63b | 1.33±0.83 | 2.67±0.83a | 8.33±1.67ab | 3.67±1.15b | 86.67±2.05a | |
T3 | 5.33±1.59ab | 3.00±1.20b | 22.33±1.71a | 5.33±1.48a | 5.00±1.26b | _ | 1.50±0.89ab | 14.33±1.61a | 16.00±1.53a | 59.67±2.50b |
表5
‘红星’苹果纯合基因型株系性状"
株系 Line | 叶数 Leave number | 根数 Root number | 根长 Root length (cm) | 株高 Plant height (cm) | 叶柄长 Petiole length (cm) | 叶形指数 Leaf shape index |
---|---|---|---|---|---|---|
DH0-1 | 27.00±1.00a | 17.67±1.56a | 4.27±0.91a | 3.70±0.91ab | 0.83±0.49a | 1.66±0.52b |
DH0-2 | 12.33±1.45b | 4.33±1.28c | 5.73±1.15b | 2.37±0.80c | 0.5±0.46c | 2.07±0.49a |
DH0-3 | 22.33±1.28a | 10.67±1.28b | 18.17±1.89a | 4.13±0.80a | 0.80±0.46a | 1.60±0.51b |
DH0-4 | 26.67±1.71a | 18.67±1.56a | 3.17±0.85b | 3.47±0.71abc | 0.87±0.39a | 1.74±0.54b |
DH0-5 | 15.00±1.00b | 8.00±1.00bc | 3.53±0.91b | 2.57±0.86bc | 0.63±0.39bc | 1.71±0.37b |
DH0-6 | 26.00±1.84a | 11.00±1.38b | 2.87±0.49b | 4.57±0.49a | 0.7±0.46b | 1.68±0.59b |
DH0-7 | 22.67±1.28a | 22.33±1.59a | 2.67±1.08b | 3.67±1.01ab | 0.77±0.39a | 1.88±0.67ab |
表6
‘富士’苹果纯合基因型株系性状"
株系 Line | 叶数 Leave number | 根数 Root number | 根长 Root length(cm) | 株高 Plant height (cm) | 叶柄长 Petiole length (cm) | 叶形指数 Leaf shape index |
---|---|---|---|---|---|---|
DH1-1 | 15.33±1.32b | 17.67±1.56b | 7.93±0.87b | 1.97±0.67d | 0.83±0.39bc | 1.90±0.63ab |
DH1-2 | 16.00±1.38b | 12.33±1.28c | 22.27±1.63a | 2.23±0.63cd | 1.53±0.77a | 1.61±0.41b |
DH1-3 | 17.67±1.15ab | 26.00±1.53a | 19.00±1.56a | 3.07±0.69ab | 1.17±0.53ba | 1.58±0.73b |
DH1-4 | 22.67±1.28a | 4.00±1.38d | 4.47±1.32b | 2.57±0.59bc | 0.87±0.39bc | 2.12±0.55a |
DH1-5 | 22.33±1.65a | 1.33±0.83d | 4.43±1.55b | 3.33±0.72a | 0.70±0.58c | 1.52±0.57b |
表7
‘嘎啦’苹果纯合基因型株系性状"
株系 Line | 叶数 Leave number | 根数 Root number | 根长 Root length(cm) | 株高 Plant height | 叶柄长 Petiole length (cm) | 叶形指数 Leaf shape index |
---|---|---|---|---|---|---|
DH2-1 | 13.67±1.48gh | 17.00±1.66ef | 6.43±1.47ghi | 1.70±0.46g | 0.70±0.46ef | 2.15±0.60bc |
DH2-2 | 20.00±1.00defg | 41.67±1.52b | 6.33±1.01ghi | 5.57±1.01a | 1.27±0.59ab | 2.29±0.57b |
DH2-3 | 32.33±1.83abc | 3.67±1.15hij | 13.17±1.20f | 3.17±0.71d | 1.0±0.67bcde | 3.07±0.68a |
DH2-4 | 36.67±2.30a | 5.00±1.00ghij | 27.17±2.08bc | 2.97±0.86de | 1.33±0.39a | 1.74±0.34defg |
DH2-5 | 11.33±1.36h | 1j | 5.87±1.05ghi | 1.70±0.70g | 0.57±0.39f | 1.69±0.75efg |
DH2-6 | 21.33±1.28defg | 35.67±1.15c | 9.97±0.98fgh | 3.20±0.71d | 0.80±0.64cdef | 2.21±0.45b |
DH2-7 | 18.67±1.28defgh | 43.67±1.72b | 35.27±1.78a | 5.10±0.58ab | 1.10±0.46abc | 2.07±0.51bcd |
DH2-8 | 20.67±1.93defg | 21.67±1.61de | 3.67±0.71i | 1.67±0.53g | 0.80±0.64cdef | 1.92±0.68bcdef |
DH2-9 | 19.33±1.45defgh | 8.00±1.26ghi | 11.67±1.40fg | 4.10±0.46c | 0.83±0.53cdef | 1.63±0.56fg |
DH2-10 | 20.00±1.53defg | 5.00±1.20ghij | 22.10±1.31cd | 2.20±0.64fg | 0.83±0.49cdef | 1.92±0.54bcdef |
DH2-11 | 17.33±1.05efgh | 10.00±1.44gh | 12.53±1.31f | 2.90±0.64de | 0.90±0.46cde | 1.40±0.45g |
DH2-12 | 27.00±1.53bcd | 11.33±1.15fg | 19.63±1.36de | 2.90±0.64de | 0.73±0.53def | 1.58±0.47fg |
DH2-13 | 21.67±1.05defg | 24.67±1.28d | 4.93±1.47hi | 1.77±0.53g | 0.70±0.46ef | 2.21±0.37b |
DH2-14 | 25.00±1.38cde | 6.33±1.36ghij | 9.17±1.46fghi | 2.53±0.53def | 0.83±0.63cdef | 2.12±0.59bc |
DH2-15 | 20.67±1.36defg | 4.00±1.00hij | 14.89±1.28ef | 2.47±0.39ef | 0.93±0.39cde | 1.80±0.55cdef |
DH2-16 | 15.33±1.36fgh | 1.33±0.83j | 3.43±1.02i | 3.17±0.59d | 1.03±0.39bcd | 2.29±0.59b |
DH2-17 | 21.00±1.26defg | 2.67±0.83ij | 11.77±1.40fg | 2.40±0.56ef | 0.83±0.49cdef | 2.11±0.39bc |
DH2-18 | 34.33±1.78ab | 11.00±1.20fg | 9.87±1.03fgh | 3.07±0.67de | 0.80±0.58cdef | 2.07±0.49bcd |
DH2-19 | 25.00±1.38cde | 11.33±1.68fg | 11.17±1.31fg | 3.17±0.71d | 0.90±0.46cde | 2.00±0.44bcde |
DH2-20 | 23.67±1.61def | 85.67±2.16a | 30.00±1.10b | 4.60±0.67bc | 1.03±0.53bcd | 2.21±0.53b |
[1] | GERMANÀ M A.oubled haploid production in fruit crops. DPlant Cell, Tissue and Organ Culture, 2016, 86(2): 131-146. |
[2] |
王炜, 陈琛, 欧巧明, 叶春雷, 罗俊杰. 小麦花药培养的研究和应用. 核农学报, 2016, 30(12): 2343-2354.
doi: 10.11869/j.issn.100-8551.2016.12.2343 |
WANG W, CHEN C, OU Q M, YE C L, LUO J J.Research and application of wheat anther culture.Journal of Nuclear Agricultural Sciences, 2016, 30(12): 2343-2354. (in Chinese)
doi: 10.11869/j.issn.100-8551.2016.12.2343 |
|
[3] | CARDOSO J C, MARTINELLI A P, GERMANÀ M A, LATADO R R.In vitro anther culture of sweet orange (Citrus sinensis L. Osbeck) genotypes and of a C. clementina × C. sinensis ‘Hamlin’ hybrid. Plant Cell, Tissue and Organ Culture, 2014, 117(3): 455-464. |
[4] | ZHAO J, ZOU X X, ZHANG Z Q, YANG B Z, ZHOU S D.Influences of carbon sources and plant growth regulators on anther culture efficiency of pepper.Agricultural Science and Technology, 2010, 11(4): 102-105. |
[5] | HÖFER M.In vitro androgenesis in apple. Gartenbauwissenschaft, 2003, 60(1): 287-292. |
[6] | 李佳. 百合单倍体培养及细胞学观察[D]. 北京: 中国农业科学院, 2011. |
LI J.Haploid culture and cytology observation in lilium [D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[7] | ZHANG C F, SATO S, TSUKUNI T, SATO M, OKADA H, YAMAMOTO T, WADA M, MATSUMOTO S, YOSHIKAWA N, MIMIDA N, TAKAGISHI K, WATANABE M, CAO Q F, KOMORI S.Elucidating cultivar differences in plant regeneration ability in an apple anther culture.The Horticulture Journal preview, 2016, doi: 10.2503/ hortj.MI-094. |
[8] | 薛光荣, 牛健哲, 杨振英, 史永忠, 费开韦. 苹果花药培养技术及8个主栽品种的花粉植株培育成功. 中国农业科学, 1990, 23(3): 86-87. |
XUE G R, NIU J Z, YANG Z Y, SHI Y Z, FEI K W.The technique of apple anther culture and the successful culture of pollen plantlets of 8 main apple cultivar.Scientia Agricultura Sinica, 1990, 23(3): 86-87. (in Chinese) | |
[9] | ZHANG C, TSUKUNI T, IKEDA M, SATO M, OKADA H, OHASHI Y, MATSUNO H, YAMAMOTOT, WADA M, YOSHIKAWA N, MATSUMOTO S, LI J, MIMIDA N, WATANABE M, SUZUKI A, KOMORI S.Effects of the microspore development stage and cold pre-treatment of flower buds on embryo induction in apple (Malus × domestica Borkh.) anther culture. Journal-Japanese Society for Horticultural Science, 2013, 82(82): 114-124. |
[10] |
温鑫, 邓舒, 张春芬, 侯丽媛, 石江鹏, 聂园军, 肖蓉, 秦永军, 曹秋芬. ‘嘎啦’苹果花药培养种质创新. 中国农业科学, 2017, 50(14): 2793-2806.
doi: 10.3864/j.issn.0578-1752.2017.14.015 |
WEN X, DENG S, ZHANG C F, HOU L Y, SHI J P, NIE Y J, XIAO R, QIN Y J, CAO Q F.Regeneration of new germplasms using anther culture of apple cultivar ‘Gala’.Scientia Agricultura Sinica, 2017, 50(14): 2793-2806. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.015 |
|
[11] |
HÖFER M. Regeneration of androgenic embryos in apple (Malus× domestica Brokh.) via anther and microspore culture. Acta Physiologiae Plantarum, 2005, 27(4): 709-716.
doi: 10.1007/s11738-005-0075-6 |
[12] |
HÖFER M, GRAFE C, BOUDICHEVSKAJA A, LOPEZ A, BUENO M A, ROEN D. Characterization of plant material obtained by in vitro androgenesis and in situ parthenogenesis in apple. Scientia Horticulturae, 2008, 117(3): 203-211.
doi: 10.1016/j.scienta.2008.02.020 |
[13] |
HÖFER M, FLACHOWSKY H. Comprehensive characterization of plant material obtained by in vitro androgenesis in apple.Plant Cell, Tissue and Organ Culture, 2015, 122(3): 617-628.
doi: 10.1007/s11240-015-0794-3 |
[14] | 翟衡, 史大川, 束环瑞. 我国苹果产业发展现状与趋势. 果树学报, 2007, 24(3): 355-360. |
ZHAI H, SHI D C, SHU H R.Current state and developing trend of apple industry in China.Journal of Fruit Science, 2007, 24(3): 355-360. (in Chinese) | |
[15] | 张春芬, 邓舒, 肖蓉, 孟玉平, 曹秋芬. 苹果花药培养再生植株的倍性鉴定及SSR分析. 园艺学报, 2015, 42(S1): 2580. |
ZHANG C F, DENG S, XIAO R, MENG Y P, CAO Q F.Ploidy identification and SSR analysis of regenerated plants in apple anther culture.Acta Horticulturae Sinica, 2015, 42(S1): 2580. (in Chinese) | |
[16] | 任莹. 苹果单倍体育种技术探究[D]. 太原: 山西大学, 2015. |
REN Y.Research on Haploid breeding technique in anther culture [D]. Taiyuan: Shanxi University, 2015. (in Chinese) | |
[17] | 蒲富慎.果树种质资源描述符—记载项目及评价标准. 北京: 中国农业出版社, 1990: 23-37. |
PU F S.Fruits Germplasm Descripto—Record Items and Evaluation Standards. Beijing: China Agricultural Press, 1990: 23-37. (in Chinese) | |
[18] |
崔佩佩, 刘鹏, 刘佳琪, 王劲松, 武爱莲, 董二伟, 丁玉川, 焦晓燕. 不同养分配比对高粱根系生长及养分吸收的影响. 中国生态农业学报, 2017, 25(11): 1643-1652.
doi: 10.13930/j.cnki.cjea.170300 |
CUI P P, LIU P, LIU J Q, WANG J S, WU A L, DONG E W, DING Y C, JIAO X Y.Effect of different nutrient co mbinations on root growth and nutrient accumulation in sorghum.Chinese Journal of Eco- Agriculture, 2017, 25(11): 1643-1652.
doi: 10.13930/j.cnki.cjea.170300 |
|
[19] |
ZENG S H, CHEN C W, HONG L, LIU J H, DENG X X.n vitro induction, regeneration and analysis of autotetraploids derived from protoplasts and callus treated with colchicine in Citrus. Plant Cell, Tissue and Organ Culture, 2006, 87(1): 85-93.
doi: 10.1007/s11240-006-9142-y |
[20] | KAWASE K, YAHATA M, NAKAGANA S, HARAGUCHI K, KUNITAKE H.Selection of autotetraploid and its morphological characteristics in Meiwa Kumquat (Fortunella crassifolia Swingle)(Breeding & Germplasm Resources). Horticultural Research, 1975, 4(11): 141-146. |
[21] |
HÖFER M.In vitro androgenesis in apple-improvement of the induction phase. Plant Cell Reports, 2004, 22(6): 365-370.
doi: 10.1007/s00299-003-0701-y pmid: 14685764 |
[22] |
TESTILLANO P, GEORGIEV S, MOGENSEN H L, CORONADO M J, DUMAS C, RISUENO M C, MATTHYS-ROCHON E.Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis.Chromosoma, 2004, 112(7): 342-349.
doi: 10.1007/s00412-004-0279-3 pmid: 15138769 |
[23] | GRIGGS R, ZHENG M Y.Nuclear fusion during early stage of microspore embryogenesis indicates chromosome doubling in wheat (Triticum aestivum). American Journal of Plant Sciences, 2016, 07(3): 489-499. |
[24] |
钟晓红, 戴思慧, 马定渭. 核果类果树茎尖培养研究进展. 果树学报, 2003, 20(5): 388-392.
doi: 10.3969/j.issn.1009-9980.2003.05.011 |
ZHONG X H, DAI S H, MA D W.Advances of research in shoot-tip culture on stone fruit crops.Journal of Fruit Science, 2003, 20(5): 388-392. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2003.05.011 |
|
[25] | 肖祖飞. 童性对苹果砧木绿枝扦插生根的影响[D]. 北京: 中国农业大学, 2014. |
XIAO Z F.Impact of the juvenility on the adventitious rooting of leafy cuttings in apple rootstocks [D]. Beijing: China Agriculture University, 2014. (in Chinese) | |
[26] |
KAUSHAL N, MODGIL M, THAKUR M, SHARMA D R .In vitro clonal multiplication of an apple rootstock by culture of shoot apices and axillary buds. Indian Journal of Experimental Biology, 2005, 43(6): 561-565.
pmid: 15991584 |
[27] |
DOBRÁNSZKI J, SILVA J A T D. Micropropagation of apple-a review.Biotechnology Advances, 2010, 28(4): 462-488.
doi: 10.1016/j.biotechadv.2010.02.008 |
[28] |
谢璇, 许轲, 谢闽新, 朱元娣. 苹果茎尖培养快繁体系的优化. 植物生理学报, 2015, 51(12): 2152-2156.
doi: 10.13592/j.cnki.ppj.2015.0474 |
XIE X, XU K, XIE M X, ZHU Y D.Optimization of rapid micropropagation system of apple meristem-tip culture.Plant Physiology Journal, 2015, 51(12): 2152-2156. (in Chinese)
doi: 10.13592/j.cnki.ppj.2015.0474 |
|
[29] | 陈银全, 沈汉清, 柯昉. 水稻花培育种研究及新进展. 福建农业学报, 1997, 12(2): 6-10. |
CHEN Y Q, SHEN H Q, KE F.Studies and advances on rice anther culture breeding.Journal of Fujian Academy of Agricultural Sciences, 1997, 12(2): 6-10. (in Chinese) | |
[30] |
VANWYNSBERGHE L, KDE W, COART E, KEULEMANS J.Limited application of homozygous genotypes in apple breeding.Plant Breeding, 2005, 124(4): 399-403.
doi: 10.1111/j.1439-0523.2005.01117.x |
[31] |
OKADA H, OHASHI Y, SATO M, MATSUNO H, YAMAMOTO T, KIM H, TUKUNI T, KOMORI S.Characterization of fertile homozygous genotypes from anther culture in apple.Journal of the American Society for Horticultural Science, 2009, 134(6): 641-648.
doi: 10.1051/fruits:2009034 |
[32] |
CAO H, BISWAS MK, LU¨ Y, AMAR MH, TONG Z, XU Q, XU J, GUO W, DENG X.Doubled haploid callus lines of valencia sweet orange recovered from anther culture.Plant Cell, Tissue and Organ Culture, 2011, 104(3): 415-423.
doi: 10.1007/s11240-010-9860-z |
[33] |
GERMANA M A, ALEZA P, CARRERA E, CHEN C, CHIANCONE B, COSTANTINO G, DAMBIER D, DENG X X, FEDERICI C T, FROELICHER Y, GUO W W, IBÁÑEZ V, JUÁREZ S, KWOK K, LURO F, MACHADO M A, NARANJO M A, NAVARRO L, OLLITRAULT P, RÍOS G, ROOSE M L, TALON M, XU Q, GMITTER JR F G. Cytological and molecular characterization of three gametoclones of Citrus clementina.BMC Plant Biology, 2013, 13(1): 129-150.
doi: 10.1186/1471-2229-13-129 pmid: 3847870 |
[34] | LI Y, LI H, CHEN Z, JI L X, YE M X, WANG J, WANG L, AN X M.Haploid plants from anther cultures of poplar (Populus × beijingensis). Plant Cell, Tissue and Organ Culture, 2013, 114(1): 39-48. |
[35] |
CHEN Z J,HA M,SOLTIS D.Polyploidy: Genome obesity and its consequences.New Phytologist, 2007, 174(4): 717-720.
doi: 10.1111/j.1469-8137.2007.02084.x pmid: 17504455 |
[36] | ADAMS K L, WENDEL J F.Novel patterns of gene expression in polyploidy plants.Trends in Genetics, 2005, 21(10): 539-543. |
[37] | HA M, KIM E D, CHEN Z J.Duplicate genes increase expression diversity in closely related species and allopolyploids.Proceedings of the National Academy of Sciences, 2009, 106(7): 2295-2300. |
[38] |
RIDDLE N C, KATO A, BIRCHLER J A.Genetic variation for the response to ploidy change in Zea mays L. Theoretical and Applied Genetics, 2006, 114(1): 101-111.
doi: 10.1007/s00122-006-0414-z pmid: 17053922 |
[1] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[2] | 温鑫,邓舒,张春芬,侯丽媛,石江鹏,聂园军,肖蓉,秦永军,曹秋芬. ‘嘎啦’苹果花药培养种质创新[J]. 中国农业科学, 2017, 50(14): 2793-2806. |
[3] | 解凯东1, 王惠芹1, 王晓培1, 梁武军1, 谢宗周1, 伊华林1, 邓秀新1, Grosser Jude W2, 郭文武1. 单胚性二倍体为母本与异源四倍体杂交大规模创制柑橘三倍体[J]. 中国农业科学, 2013, 46(21): 4550-4557. |
[4] | 马爱红,范培格,孙建设,李绍华. 四倍体葡萄诱导技术的研究[J]. 中国农业科学, 2005, 38(08): 1645-1651 . |
|