中国农业科学 ›› 2014, Vol. 47 ›› Issue (13): 2504-2518.doi: 10.3864/j.issn.0578-1752.2014.13.003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

参与农杆菌侵染及T-DNA转运过程植物蛋白的研究进展和思考

 赵佩, 王轲, 张伟, 杜丽璞, 叶兴国   

  1. 中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程/农业部麦类生物学与遗传育种重点实验室,北京100081
  • 收稿日期:2014-01-13 出版日期:2014-07-01 发布日期:2014-03-03
  • 通讯作者: 叶兴国,Tel:010-82105173;E-mail:yexingguo@caas.cn
  • 作者简介:赵佩,Tel:010-82108748;E-mail:zhaopei1986@126.com
  • 基金资助:

    国家转基因重大专项(2011ZX08010-004)、农业部“948”项目(2013-S3)

Review and Inspiration of Plant Proteins Involved in the Transformation Processing of T-DNA Initiated by Agrobacterium

 ZHAO  Pei, WANG  Ke, ZHANG  Wei, DU  Li-Pu, YE  Xing-Guo   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility of Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081
  • Received:2014-01-13 Online:2014-07-01 Published:2014-03-03

摘要: 农杆菌是一种革兰氏阴性土壤病原细菌,携带具有天然转基因功能的Ti质粒或Ri质粒,能将一部分遗传物质插入到寄主植物的染色体上,使其稳定遗传和表达,赋予植物新的性状。所以农杆菌作为最有效的转化媒介,已被广泛应用于多数双子叶植物和部分单子叶植物转基因研究。虽然农杆菌介导的转化技术具有操作简单、成本低廉,转基因沉默几率小,插入基因拷贝数少等优点,但农杆菌介导植物遗传转化是一个复杂的生物学过程,需要一系列农杆菌蛋白和植物蛋白相互作用,共同完成外源基因的转入和整合。植物相关蛋白在转化过程中起着重要作用。其中,阿拉伯半乳聚糖蛋白(AGP)、植物根钙粘附蛋白和类玻连蛋白等参与农杆菌附着于植物细胞表面的过程;鸟苷三磷酸腺苷酶(GTPase)和BTI蛋白协助T-DNA和Vir效应蛋白进入植物细胞;actin、GIP、VIP等蛋白参与T-DNA复合体在细胞质中的运输的过程;与Vir效应蛋白互作的VIP1、VIP2、KAPa、PP2C、Roc等蛋白协助T-DNA定位于植物细胞核;组蛋白、VIP1和VIP2等引导T-DNA在植物基因组上的整合。由于植物种类间存在巨大差异,上述一些植物蛋白基因的过表达虽能提高农杆菌转化某些植物的转化效率,但不能提高另一些植物的转化效率。在容易被农杆菌遗传转化的植物如拟南芥、水稻中的研究表明,VIP1、VIP2、AGP、H2A等蛋白与农杆菌转化关系密切,但这些蛋白在利用农杆菌转化较难的作物如小麦、玉米中的功能还不明确,因而需要在不同植物中继续筛选和鉴定与T-DNA转化相关重要蛋白的编码基因。目前,农杆菌介导的植物遗传转化有2个显著特点,一是农杆菌介导转化烟草、拟南芥、水稻等模式植物的技术日渐成熟,二是农杆菌介导转化小麦、玉米、大豆等重要作物的技术仍然没有本质突破,植物相关蛋白在T-DNA转运、整合等过程中的作用还需要深入研究和进一步明确。文章主要对参与农杆菌介导遗传转化植物整个过程中相关植物蛋白的研究进展进行了综述,以期为提高农杆菌转化顽拗型作物的转化效率提供参考。

关键词: 植物蛋白质 , 农杆菌转化 , T-DNA转运 , 基因整合

Abstract: Agrobacterium tumefaciens is a kind of Gram-negative soil bacterium, which harbors tumor inducing (Ti) or root inducing (Ri) plasmid. The T-DNA on the plasmid can enter plant cells and integrate into the host genome, and further endows plants new characteristics by stable inheritance. Thus, Agrobacterium tumefaciens, as a most efficient transformation vehicle, has been widely used in genetic engineering study for most dicotyledonous and part of monocotyledonous plants. Agrobacterium-mediated transformation technology has several advantages including simple process, low cost, less gene silence, and few copies of target genes. However, the transferring of target genes into plant genome by Agrobacterium is a complicated biological process, during which a lot of Agrobacterium proteins and plant proteins interact with each other for the mission of importation, transportation and integration of T-DNA. Associated host proteins play important roles almost in each step of the transformation of exogenous genes. For instance, AGPs, rhicadhesin binding protein, and vitronectin-like protein are involved in the Agrobacterium attachment to the surface of plant cells; GTPase and BTI proteins help T-DNA and Vir proteins enter plant cell; Actin, GIP, and VIP assist T-DNA transportation in plant protoplasm; VIP1, KAPa, PP2C, and Roc participate in the targeting and importing of T-DNA complex to plant cell nuclear, histones; VIP1 and VIP2 perform functions on the integration of T-DNA into plant genome. Due to the huge differences between plants in genomics, physiology and biochemistry, overexpression of some plant genes mentioned above do improve the transformation frequency in some plants mediated by Agrobacterium, while that doesn’t work in other plants. It was indicated that VIP1, VIP2, AGP and H2A are closely associated with the Agrobacterium-mediated transformation efficiency of some model plants like Arabidopsis and rice. However, the functions of these proteins in some recalcitrant plants to Agrobacterium infection such as wheat and maize are still undetermined. Thus, some novel proteins or genes associated with T-DNA transformation need to be isolated and identified in different plants. Presently, there are two marked features in the Agrobacterium-mediated transformation of plants. One is that the transformation technology of Agrobacterium-mediated for model plant species such as tobacco, Arabidopsis and rice is almost reaching a perfect level, and another one is that the technique is still difficult to be applied in some economically important crops including wheat, maize and soybean. Therefore, it is necessary to further investigate the roles of plant proteins associated with the transformation network in more plants. In this article, the plant proteins related to Agrobacterium infection and T-DNA delivery reported to date are reviewed to provide some useful information for the improvement of Agrobacerium-mediated transformation efficiency for some recalcitrant plants to be transformed.

Key words: plant proteins , Agrobacterium-mediated transformation , T-DNA transportation , gene integration