深翻、有机无机肥配施对稻田水分渗漏和氮素淋溶的影响
Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field
通讯作者:
责任编辑: 李云霞
收稿日期: 2020-11-14 接受日期: 2020-12-29
基金资助: |
|
Received: 2020-11-14 Accepted: 2020-12-29
作者简介 About authors
王瑾瑜,Tel:17735133681;E-mail:
【目的】针对我国长江中下游地区稻麦轮作区常年浅耕与不合理施肥导致的土壤犁底层增厚与土壤板结的问题,研究深耕(打破部分犁底层)与施肥方式对稻田土壤容重、土壤紧实度、土壤水分渗漏量、氮素淋溶量及氮素形态的影响,阐明稻田氮素淋溶量与耕作、施肥方式的响应机制,为稻田合理耕层构建提供理论依据。【方法】(1)基于2015年安徽省舒城县设置两种耕作方式(旋耕12 cm、深翻20 cm)、3种等氮量施肥方式(仅施化肥处理T1、秸秆还田配施化肥处理T2、有机与无机肥配施处理T3)的田间定位试验,2019—2020年监测土壤容重与紧实度以及稻季水分渗漏与氮素淋溶量。(2)通过原状土柱模拟试验,研究深翻30 cm(打破犁底层)对稻田水分渗漏量的影响。【结果】(1)田间试验结果表明,深翻20 cm较旋耕12 cm降低了耕层土壤容重与紧实度,但没有显著增加水稻生育期的水分渗漏量,仅在分蘖期增加7.4%,孕穗期之后无显著影响。(2)土柱试验结果显示,深翻30 cm(打破犁底层)水分渗漏量较旋耕12 cm和深翻20 cm显著增加,淹水时分别增加19.0%与11.0%,非淹水时分别增加23.0%与21.5%。(3)田间试验水分渗漏液中的氮素主要以硝态氮的形式存在,T3较T1和T2处理在水稻进入孕穗期后显著降低渗漏液中硝态氮的浓度;各施肥处理间铵态氮浓度差异不显著。(4)从整个水稻生育期看,两种耕作方式对氮素淋溶量影响不显著,而3种施肥方式下氮素淋溶量存在明显差异,T3处理降低了氮素淋溶量。深翻条件下T1、T2与T3处理氮素淋溶量分别为10.69、11.74和9.14 kg N·hm-2,旋耕条件下分别为9.83、11.21和8.58 kg N·hm-2。【结论】深翻20 cm可以改善土壤物理性状,但不会增加土壤水分渗漏及氮素淋溶;相同耕作方式下,有机与无机肥配施不会增加土壤水分渗漏与氮素淋溶。因此,在长江中下游黏质且犁底层厚(如红黄壤型)的水稻土区,部分打破犁底层,有机与无机肥配施,可构建深厚肥沃的耕作层,且不会增加水分渗漏和氮素的淋溶。
关键词:
【Objective】Aimed at the problems of shallow soil plow layer, thickening of plow pan and soil hardening caused by perennial shallow ploughing and unreasonable fertilization in rice-wheat rotation area in the middle and lower reaches of Yangtze River in China,the effects of deep plowing (breaking part of plow pan) and fertilization on paddy field soil bulk density, soil compaction, soil water leaching and nitrogen leaching were studied to illuminate the response of nitrogen leaching to two tillage methods and three fertilization measures, and then provide theoretical basis for the construction of plow layer in the paddy soil. 【Method】 (1) Two tillage methods (rotary tillage 12 cm and deep plowing 20 cm) and three equal nitrogen fertilization treatments (single inorganic fertilizer treatment T1, returning straw with inorganic fertilizer treatment T2, organic manure with inorganic fertilizer treatment T3) were established in Shucheng County, Anhui Province in 2015. Soil water leaching and nitrogen leaching in rice season as well as soil bulk density and soil compaction were monitored dynamically in 2019-2020; (2) The soil-column experiment from paddy field was conducted to monitor. Water leaching from the treatment of deep plowing 30 cm in depth (total breaking of soil plow pan) was studied. 【Result】 (1) Field experiment results showed that the soil bulk density and soil compaction from the treatment of deep plowing 20 cm in depth were declined in rice season compared to those from the treatment of rotary tillage 12 cm in depth. Compared with the treatment of rotary tillage 12 cm in depth, the soil water leaching from the treatment of deep plowing 20 cm in depth increased by 7.4% in tillering stage, and there was no obvious change in soil water leaching after rice booting stage. From the whole rice growth period, the difference of soil water leaching between the treatment of deep plowing 20 cm in depth and the treatment of rotary tillage 12 cm in depth was not significant; (2) The results of soil-column experiment showed the soil water leaching from the treatment of deep plowing 30 cm in depth (total breaking of soil plow pan) increased significantly by 19.0% and 11.0% in flooding and 23.0% and 21.5% in non-flooding, respectively, compared with the treatment of rotary tillage 12 cm in depth and the treatment of deep plowing 20 cm in depth; (3) Nitrate nitrogen was dominant form of nitrogen in the soil water leaching. The concentration of nitrate nitrogen in soil water leaching from T3 treatment decreased significantly compared with that of T1 and T2 treatment after rice booting stage, but the difference of ammonium nitrogen concentration in soil water leaching from T1, T2 and T3 treatment were not significant; (4) From the whole growth period of rice, the difference of nitrogen leaching from the treatment of rotary tillage 12 cm in depth and the treatment of deep plowing 20 cm in depth was not significant, while the three treatments of fertilization had obvious difference on nitrogen leaching. Under the condition of deep plowing 20 cm in depth, the nitrogen leaching rates of T1, T2 and T3 treatment were 10.7, 11.7 and 9.1 kg N·hm-2 respectively, and under the condition of rotary tillage 12 cm in depth, the nitrogen leaching rates of T1, T2 and T3 treatment were 9.83,11.21 and 8.58 kg N·hm-2, respectively. T3 treatment decreased significantly nitrogen leaching compared to T1 and T2 treatment. 【Conclusion】 Deep plowing 20 cm in depth can improve soil physical structure, however, soil water leaching and nitrogen leaching are not significantly increased, and the combination of organic manure and inorganic fertilizer can significantly reduce nitrate nitrogen leaching. These results are of theoretical significance for the building of deep and fertile tillage layer in the clay paddy soil with high plow pan (such as red-yellow soil) in the middle and lower reaches of the Yangtze River through deep plowing measures, combined application of organic manure and inorganic fertilizer.
Keywords:
本文引用格式
王瑾瑜, 程文龙, 槐圣昌, 武红亮, 邢婷婷, 于伟家, 武际, 李敏, 卢昌艾.
WANG JinYu, CHENG WenLong, HUAI ShengChang, WU HongLiang, XING TingTing, YU WeiJia, WU Ji, LI Min, LU ChangAi.
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】稻田长期浅旋等耕作方式,导致耕作层变浅、犁底层上移增厚等问题,造成土壤耕层黏闭,抑制了作物生长[1,2]。因此,研究不同耕作及施肥方式下的土壤水分与氮素淋溶,明确稻田土壤耕层构建及其培肥方式对于稻田地力培育具有重要的意义。【前人研究进展】耕作方式对于水分渗漏量和氮素淋失已经有较多的研究[3,4]。张丽等[5]通过对比后研究发现,采用深松耕可以打破犁底层,对水分渗漏量有显著提升,可改善土壤环境,提高水稻产量。李志芳等[6]研究则认为,虽然耕作方式可很大程度地改变土壤结构,但只能在短时间内增强稻田渗漏能力,在作物生育后期水分渗漏量呈明显下降的趋势。要从根本上解决耕层土壤黏重问题,需要通过施用有机肥来改善土壤的理化性质,从而改善稻田的渗透性[6,7]。有机肥的施用可以通过提高土壤潜在的反硝化速率以及微生物的活性,降低硝酸盐淋失风险[8,9]。但SIEMENS等[10]与夏红霞等[11]研究表明,有机肥的施用较单施化肥会显著增加土壤养分积累进而提高氮素淋溶的风险,对环境造成潜在威胁。前人对于耕作及施肥方式对土壤水分渗漏的研究结果有所差异,原因可能为单一的耕作方式或施肥方式并不能明确稻田土壤耕层构建或培肥方式对稻田水分与氮素淋溶的影响。【本研究切入点】研究单一耕作方式或施肥方式来改良稻田土壤结构或渗漏特性的文献较多,而同时开展耕作与施肥方式对土壤水分渗漏与养分淋溶特征的影响研究较少。【拟解决的关键问题】本研究针对土壤犁底层厚、耕层浅及偏施化肥问题,利用安徽省舒城县稻-麦轮作区两种耕作深度、3种施肥方式的定位试验,监测犁底层部分与全部打破情况下的稻田土壤水分与氮素淋溶量,及其与土壤容重、紧实度之间的关系,明确稻田土壤适宜的耕层构建深度与培肥方式。
1 材料与方法
1.1 研究区域概况
试验在安徽省舒城县国家农业高新园区(116°56'E,31°28'N)稻麦轮作定位试验田进行。该定位试验开始于2015年,供试土壤为黄棕壤类水稻土,试验开始前测定耕层厚度为0—15 cm(重壤土),土壤15—25 cm为犁底层(重壤土),25—100 cm为母质层(轻黏土)。其土壤基本理化性状见表1。试验地属亚热带温润性季风气候区,平均气温最高为7月(34℃),最低为1月(9℃),年平均气温15.6℃。无霜期为224 d,年平均降雨量1 171 mm。
表1 基础土壤理化性状
Table 1
土层 Soil layer (cm) | pH | 有机质 OM (g·kg-1) | 全氮 Total N (g·kg-1) | 碱解氮 Available N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 土壤容重 Soil bulk density (g·cm-3) |
---|---|---|---|---|---|---|---|
0-15 | 5.85 | 25.0 | 1.40 | 98.1 | 9.5 | 96.0 | 1.35 |
15-30 | 6.21 | 17.0 | 1.01 | 53.1 | 6.0 | 76.0 | 1.54 |
1.2 试验设计
采用裂区设计,主区为耕作措施(旋耕12 cm、深翻20 cm),副区为3个等氮施肥处理T1、T2、T3,副区处理随机排列重复3次,小区面积40 m2(5 m×8 m)。其中T1指单施化肥,小麦季施肥量为180 kg N·hm-2、60 kg P2O5·hm-2、90 kg K2O·hm-2;水稻季施肥量为210 kg N·hm-2、75 kg P2O5·hm-2、120 kg K2O·hm-2;T2指秸秆还田与化肥配施(秸秆还田量4 500 kg·hm-2,秸秆含氮量为5.0 g·kg-1);T3指有机肥与化肥配施(有机肥为干基猪粪,用量4 500 kg·hm-2,含氮量17.5 g·kg-1),氮养分不足部分用化肥补齐,使得各处理氮养分投入量一致。旋耕采用170小型旋耕机;深翻采用GMF-240深翻机完成作业。稻季与麦季作物收获后地上部全部移除,留茬高度小于10 cm,当季秸秆粉碎后翻压还田。磷钾肥全部基施;氮肥基追比为6﹕2﹕2,分别于水稻分蘖期和孕穗期追施。水稻孕穗期与灌浆后期晒田,水分与植保等管理措施与当地习惯保持一致,具体降雨及灌溉水量见图1,水稻品种、种植密度、施肥、渗漏液取样及水稻收获日期见表2。
图1
表2 田间管理及取样日期
Table 2
年份 Year | 水稻品种 Rice variety | 密度 Planting density (×103·hm-2) | 基肥日期 Basal fertilization date | 移栽日期 Transplanting date | 追肥日期 Topdressing date | 渗漏液取样日期 Sampling date | 收获日期 Harvest date |
---|---|---|---|---|---|---|---|
2019 | 隆两优534 Longliangyou 534 | 210 | 6.2 | 6.7 | 6.17、7.9 | 6.19、7.1、7.11、7.21、8.1、8.11 | 9.14 |
2020 | 隆两优534 Longliangyou 534 | 210 | 6.3 | 6.8 | 6.17、7.9 | 6.19、7.1、7.11、7.21、8.1、8.11 | 9.13 |
1.3 样品采集与测定
1.3.1 土壤物理性质的测定 在水稻收获后测定土壤容重与紧实度,土壤容重按照0—5、5—15、15—25、25—35、35—45 cm取环刀土进行测定;土壤紧实度采用美国Spectrum公司SC—900土壤紧实度测量仪原位测定,土壤测量深度为0—45 cm,每个小区重复5次。
1.3.2 田间渗漏水样的收集与测定 在水稻生育期间,采用直径为6 cm的陶瓷头负压式土壤溶液取样器定点收集田间渗漏液。在土壤深度30 cm处埋置陶瓷头,并接PVC管。在收集渗漏液前一天使用负压枪将PVC管抽为负压,以便渗漏液进入管中。24 h后从接有长软管的陶瓷头内抽取水分渗漏液注入塑料瓶中。每隔10 d抽取一次直到收割[12]。收集的渗漏液立即称重后使用流动分析仪测定铵态氮、硝态氮含量。
1.3.3 原状土柱渗漏水样的收集与测定 田间试验犁底层并未全部打破,只是部分打破了犁底层。通过室内土柱试验模拟3种耕作深度(旋耕12 cm,未打破犁底层;深翻20 cm,打破部分犁底层;深翻30 cm,打破全部犁底层),初步探究犁底层全部打破对水分渗漏的影响。旋耕12 cm与深翻20 cm处理均在田间取原状土柱直接进行淋洗,深翻30 cm处理取自田间0—30 cm土壤全部混匀装柱后进行淋洗。所用原状土柱为自制高40 cm,直径为20 cm的不锈钢圆环,类似于环刀取土的方法[13,14],选择田间平整土壤将土柱垂直嵌入30 cm深水稻土中,在不扰动土柱内土壤结构的基础上将土柱与土体取出放置室内,并在土体上方放置玻璃棉防止水分加入时改变表层土体结构,在下方固定玻璃棉以过滤渗漏液并防止土块掉落;为防止土柱与管壁间的孔隙流,取无肥区土壤加水和为泥浆沿圆环内壁浇下,填充土柱内土体与圆环内壁之间的空隙,土柱下方固定自制三脚架将其架空并在下方收集渗漏液。第一次淋洗试验按照少量多次原则向土柱内加入蒸馏水,调节土壤含水量使其下方恰好无渗漏,拟模拟田间水稻生育前期淹水时水分渗漏状况;之后缓慢加入300 mL蒸馏水平衡2 h后统一收集淋洗液;土柱放置3 d后进行第二次淋洗试验,拟模拟水稻生育后期非淹水时的水分渗漏状况。
1.4 数据处理与分析
1.4.1 田间水分渗漏与氮素淋溶试验数据处理 2019—2020两年水稻季田间监测时间基本一致,且监测数据差异不大,取平均值计算。
1.4.2 土壤水分与氮素淋溶量的计算 土壤水分每天下渗速率通过以下公式计算:
其中,v为下渗速率(mm·d-1);V水为每天渗漏液体积(cm3·d-1);S底为取样器底面积(cm2);10为cm与mm的换算倍数。
水稻生育期氮素淋溶量通过以下公式计算[15]:
式中,Q为水稻生育期氮素淋溶量(kg·hm-2);CNH4+为渗漏液中铵态氮浓度(mg·L-1);CNO3-为渗漏液中硝态氮浓度(mg·L-1);V水为每天渗漏液体积(cm3·d-1); S底为取样器底面积(cm2);i为1、2、3...49;n为天数(d);10-5为单位换算系数。
数据分析采用Microsoft Excel 2019和SPSS 19软件进行数据统计分析,采用Duncan分析进行显著性检验,采用 Sigma Plot 12.5制作图表。
2 结果
2.1 耕作与施肥措施对土壤物理性状的影响
2.1.1 耕作对土壤容重的影响 耕作方式对于土层0—15和25—45 cm土壤容重影响不显著,深翻显著降低了15—25 cm土层容重(表3),且在25—35 cm处土壤容重达到最大,分别为1.62和1.60 g·cm-3。
表3 深翻和旋耕对土壤容重的影响
Table 3
土壤深度 Soil depth (cm) | 土壤容重Soil bulk destiny (g·cm-3) | |
---|---|---|
深翻 20 cm Deep plowing 20 cm | 旋耕 12 cm Rotary tillage 12 cm | |
0—5 | 1.36Ca | 1.34Ca |
5—15 | 1.35Ca | 1.39Ca |
15—25 | 1.43Bb | 1.54Ba |
25—35 | 1.62Aa | 1.60Aa |
35—45 | 1.58Aa | 1.60Aa |
同一列大写字母代表同一耕作方式下,不同土壤深度之间差异显著(P<0.05);小写字母代表同一土层深度下深翻与旋耕差异显著(P<0.05)。下表同
Different capital letters in the same column represent significant differences between different soil depths under the same tillage (P<0.05). Different lowercase letters represent significant differences between different tillage under the same soil depth (P<0.05). The same as table below
2.1.2 耕作与施肥对土壤紧实度的影响 不同耕作方式对土壤紧实度的作用效果在水稻生长季极为明显,尤其是耕层土壤。同一施肥处理下,与旋耕相比,深翻降低了0—25 cm土层的紧实度,其中T3处理两者差异最显著;两种耕作处理土壤紧实度在25 cm以下土层无明显差异(图2)。3种施肥处理下,深翻与旋耕土壤紧实度均在30—40 cm达到最大。
图2
图2
不同耕作和施肥方式下的土壤紧实度
Fig. 2
Soil compactness under different tillage and fertilization treatments
2.2 耕作对水分渗漏量的影响
水稻生育期的田间监测结果表明,水稻分蘖初期(6月19日)深翻处理下的水分渗漏量显著大于旋耕,7月1日开始旋耕与深翻处理下水分渗漏量无明显差异(图3)。水稻生育后期8月中旬到9月14日田间未见明显的渗漏。总体来说,两种耕作方式下水分渗漏总量差异不显著。水分渗漏液收集期间旋耕与深翻平均渗漏速率分别为7.5、8.1 mm·d-1。
图3
图3
不同耕作方式的水分渗漏量
不同小写字母表示同一采样日期不同耕作水分渗漏量存在差异(P<0.05)。
Fig. 3
Water leaching under different tillage treatments in field experiment
Different lowercase letters indicated significant differences between different tillage under the same date of sampling (P<0.05). The same as
模拟不同耕作深度的土柱试验结果表明,深翻30 cm会显著增加水分渗漏量(图4)。在同一含水量条件下深翻30 cm(打破全部犁底层)的水分渗漏量均显著大于旋耕12 cm与深翻20 cm处理,旋耕12 cm与深翻20 cm处理之间差异不显著。淹水状态时,深翻30 cm水分渗漏量较旋耕与深翻分别增加19.0%与11.0%,非淹水时分别增加23.0%与21.5%。
图4
图4
不同耕作深度的水分渗漏量(A:淹水;B:非淹水)
Fig. 4
The water leaching of different tillage depth by soil-column experiment (A: Water flooding; B: Non flooding)
2.3 施肥对水分渗漏液中NH4+-N与NO3--N浓度的影响
通过2019—2020两年的平均监测结果可得(图5)。在水稻生育期,田间水分渗漏液铵态氮浓度为0.37—1.09 mg·L-1。T1、T2与T3施肥处理铵态氮浓度的最大值均出现在第一次追施蘖肥后两天(6月19日),分别为0.94、1.09与0.96 mg·L-1。水分渗漏液中硝态氮浓度为0.91—7.93 mg·L-1。T1、T2与T3施肥处理硝态氮浓度的最大值较为接近,均出现在第二次追施穗肥后两天(7月11日),分别为7.75、7.93与7.58 mg·L-1,最小值出现在8月11日,分别为1.75、1.66与0.91 mg·L-1。
图5
图5
不同施肥处理下渗漏液NH4+-N与NO3--N浓度的季节性变化
箭头所指为追肥时间。
Fig. 5
NH4+-N and NO3-- N concentrations of leaching water under different fertilization treatments during rice growing season
The arrow point symbols are the dates for the fertilization. The same as
2.4 耕作与施肥对氮素淋溶的影响
图6
图6
不同耕作(A)与施肥(B)处理下土壤氮素淋溶速率历时变化
Fig. 6
The rate of nitrogen leaching under different tillage (A) and fertilization (B) treatments during rice growing season
表4 稻季不同耕作与施肥处理下氮素淋溶量
Table 4
耕作方式 Tillage methods | 施肥处理 Treatments | 氮素淋溶量 N leaching (kg N·hm-2) | 占总施氮量 Percentage of N leaching in N application (%) |
---|---|---|---|
深翻20 cm Deep plowing 20 cm | T1 | 10.69±0.54 Aa | 5.09 Aa |
T2 | 11.74±0.23 Aa | 5.59 Aa | |
T3 | 9.14±0.28 Ab | 4.35 Ab | |
旋耕12 cm Rotary tillage 12 cm | T1 | 9.83±0.55 Aab | 4.68 Aab |
T2 | 11.21±0.53 Aa | 5.34 Aa | |
T3 | 8.58±0.44 Ab | 4.09 Ab |
不同大写字母表示同一施肥处理下深翻与旋耕氮素淋溶量存在差异(P<0.05);不同小写字母表示同一耕作处理下不同施肥处理之间存在差异(P<0.05)
Different uppercase letters indicated significant differences between different tillage under the same treatment (P<0.05). Different lowercase letters indicated significant differences among different treatments under the same tillage (P<0.05)
3 讨论
3.1 耕作方式对土壤水分渗漏量的影响
通过分析田间监测结果表明,与初始土壤容重相比,旋耕12 cm土壤容重无显著变化。深翻20 cm打破部分犁底层,显著降低了15—25 cm土壤容重,降低了0—25 cm土壤紧实度,而对25 cm以下土层没有影响,该结果与辛平等[18]研究结果类似。从整个水稻生育期来看深翻20 cm并没有显著增加水分渗漏量,与室内土柱模拟试验结果一致。原因是深翻20 cm后,25—35 cm土壤容重达到1.62 g·cm-3(表3),不低于旋耕25—35 cm的土壤容重,说明25 cm以下的犁底层或黏重板结层并没有被破坏,从而形成了一个新的隔水层[19];尽管深翻20 cm,降低了0—25 cm土层的土壤紧实度,但稻田土壤含水量较大,测定的土壤紧实度数值偏低[20],导致深翻20 cm虽然降低了25—35 cm土壤紧实度,但水分渗漏量没有明显增加。而在6月19日两种耕作方式下水分渗漏量出现显著差异可能与渗漏液采集前的集中降水有关(图1)。打破犁底层的土柱模拟试验结果表明,将犁底层全部打破,可能导致深层土壤蓄水能力急剧下降,增加土壤的水分渗漏[21,22],也存在增加氮素等养分流失的风险,具体影响还需田间试验进一步验证。
3.2 施肥方式对氮素淋溶的影响
通过统计分析发现,耕作与施肥对氮素淋溶量的交互作用并不显著(P=0.787),但施肥显著影响氮素淋溶量(P<0.05)。田间监测结果显示有机与无机肥配施的T3处理土壤氮素淋溶量最小,秸秆配施化肥的T2处理氮素淋溶量最大(表4)。在等量施氮条件下,有机肥的施用增加了土壤碳源,提高了土壤微生物的活性,使得土壤能通过微生物的同化作用或土壤有机质固持更多的氮素[23,24,25],有效减少了土壤水分中硝态氮的浓度,从而显著降低了深翻条件下氮素的淋溶[26]。本试验结果表明,T2处理氮素淋溶量显著高于T3处理,相较于T1处理有增加趋势但差异不显著。连续的秸秆还田导致土壤中氮素累积量高于化肥与有机肥处理[27],增加了渗漏液中的硝态氮含量[28];另一方面,由于还田秸秆短期内能固持土壤溶液中的速效氮素[29,30](如硝态氮或铵态氮),但秸秆还田使得20—30 cm土层的土壤紧实度更低(图2),且随着秸秆的腐解,其前期固持的氮素会释放出来,势必会增加水稻生育期的氮素淋溶量。此外,秸秆还田和有机肥施用可能会导致磷、钾等其他养分含量差异显著,影响作物生长及对养分的吸收,进而影响土壤水分的渗漏及氮素淋溶[31],其具体影响机理还需进一步探究。
3.3 稻田土壤耕层构建与培肥
4 结论
深翻20 cm可增加耕层厚度,显著降低20 cm耕层土壤容重与紧实度,改善耕层土壤物理结构,同时在水稻生育期并未造成土壤水分与氮素的大量流失;经土柱模拟试验初步探究,若将犁底层全部打破,水分渗漏量显著增加,可能增加氮素淋溶。土壤氮素淋溶以硝态氮为主,有机与无机肥配施可有效减少渗漏液中硝态氮的浓度,降低耕层氮素随水分渗漏的淋失风险。因此,耕作深度20 cm时,结合有机无机培肥,可改良稻田土壤紧实化的同时减少水分养分流失,可作为一种有效的稻田土壤培肥耕层构建模式。
参考文献
深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质
Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment
两年免耕后深松对土壤水分的影响
Effects of subsoiling on soil moisture under no-tillage 2 years later
Soil compaction, runoff and erosion on reclaimed coal-lands (UK)
耕作播种方式对稻茬小麦根系发育,土壤水分和硝态氮含量的影响
Effects of different tillage and sowing practices on root growth, soil moisture, and soil nitrate nitrogen content of wheat after rice
深松耕作和秸秆还田对农田土壤物理特性的影响
Effects of subsoiling tillage and straw returning to field on soil physical properties
增施有机肥提高土壤渗水和保水能力
Increasing the application of organic fertilizer to improve soil water seepage and water retention capacity
我国稻田氮磷流失现状及影响因素研究进展
Current status of nitrogen and phosphorus losses and related factors in Chinese paddy fields: A review
Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils
宁夏黄灌区稻田冬春休闲期硝态氮淋失量
The nitrate-nitrogen leaching amount in paddy winter-spring fallow period
Contribution of dissolved organic nitrogen to n leaching from four german agricultural soils
典型有机肥氮素淋溶流失特征分析
Analysis on characteristics of nitrogen losses of typical organic fertilizers in leaching experiments
稻田氮素淋失测定方法的研究进展
A review of methods to determine nitrogen leaching in paddy fields
Groundwater-induced emissions of nitrous oxide through the soil surface and from subsurface drainage in an Andosol upland field: A monolith lysimeter study
用原状土柱研究太湖地区稻麦轮作农田养分淋溶量
On nutrient leaching amount of rice-wheat rotation field with monolith lysimeter in Taihu lake area
太湖地区直播稻田氮素渗漏损失试验研究
Experimental study on nitrogen leaching in a direct-seeding rice paddy of Taihu Lake Basin
耕作模式对黄土高原地区新增耕地土壤紧实度、养分含量及玉米产量的影响
Effects of tillage patterns on soil compaction, nutrient content and yield of newly cultivated land in loess plateau
Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China
耕作方式对表层土壤饱和导水率及紧实度的影响
Effects of different tillage methods on saturated hydraulic conductivity and compactiveness of the surface soil
Compaction of loamy soils due to tractor traffic in vineyards and orchards and its effect on infiltration in southern France
不同耕作方式对茶园土壤物理性状及茶叶产量的影响
Effects of different tillage methods on tea garden soil physical characteristics and tea yield
水稻土深松对土壤物理性质及小麦生长影响的研究
[D].
Effects of subsoiling on paddy soil physical properties and growth of wheat
[D].
坡耕地局部打破犁底层对水分入渗的影响
Influence of plough pan on broke partially slope farmland to moisture content infiltration
长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响
Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping
不同施肥处理对稻田氮素径流和渗漏损失的影响
Effects of different fertilization treatments on runoff and leaching losses of nitrogen in paddy field
Deep soil adsorption of nitrate in a Japanese ndisol in response to different nitrogen sources
适当化肥配施有机肥减少稻田氮磷损失及提高产量
Formulated fertilization for reducing nitrogen and phosphorus losses from paddy fields and increasing rice yield
Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution
秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响
Nitrogen fertilizer and its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields
氮肥管理对秸秆还田下土壤氮素供应和冬小麦生长的影响
Effects of nitrogen fertilizer managements on soil nitrogen supply and winter wheat growth under straw return
长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响
Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk
Nitrogen use efficiency as affected by phosphorus and potassium in long-term rice and wheat experiments
长期化肥和有机肥施用对双季稻根茬生物量及养分积累特征的影响
Effects of long-term application of chemical and organic fertilizers on root biomass and nutrient in double cropping rice system
耕层调控与有机肥处理下麦田土壤和小麦冠层结构特性及其相互关系
Structure characteristics of soil and canopy and their relationships in wheat field under different tillage and application of organic fertilizer
利用牛粪和黑土构建肥沃耕层对沙性土壤有机质及养分含量的短期影响
The contents of soil organic matter and nutrients as impacted by constructing fertile cultivated layers of sandy soil using cow dung and black soil in a short term experiment
/
〈 |
|
〉 |
