Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain
HAN Yu-ling, GUO Dong, MA Wei, GE Jun-zhu, LI Xiang-ling, Ali Noor MEHMOOD, ZHAO Ming, ZHOU Bao-yuan
2022, 21 (9): 2559-2576.   DOI: 10.1016/j.jia.2022.07.009
Abstract220)      PDF in ScienceDirect      
Inappropriate tillage practices and nitrogen (N) management have become seriously limitations for maize (Zea mays L.) yield and N use efficiency (NUE) in the North China Plain (NCP).  In the current study, we examined the effects of strip deep rotary tillage (ST) combined with controlled-release (CR) urea on maize yield and NUE, and determined the physiological factors involved in yield formation and N accumulation during a 2-year field experiment.  Compared with conventional rotary tillage (RT) and no-tillage (NT), ST increased the soil water content and soil mineral N content (Nmin) in the 20–40 cm soil layer due to reduction by 10.5 and 13.7% in the soil bulk density in the 0–40 cm soil layer, respectively.  Compared with the values obtained by common urea (CU) fertilization, CR increased the Nmin in the 0–40 cm soil layers by 12.4 and 10.3% at the silking and maturity stages, respectively.  As a result, root length and total N accumulation were enhanced under ST and CR urea, which promoted greater leaf area and dry matter (particularly at post-silking), eventually increasing the 1 000-kernel weight of maize.  Thus, ST increased the maize yield by 8.3 and 11.0% compared with RT and NT, respectively, whereas CR urea increased maize yield by 8.9% above the values obtained under CU.  Because of greater grain yield and N accumulation, ST combined with CR urea improved the NUE substantially.  These results show that ST coupled with CR urea is an effective practice to further increase maize yield and NUE by improving soil properties and N supply, so it should be considered for sustainable maize production in the NCP (and other similar areas worldwide).
Reference | Related Articles | Metrics
Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain
WANG Dan, LI Guo-rui, ZHOU Bao-yuan, ZHAN Ming, CAO Cou-gui, MENG Qing-feng, XIA Fei, MA Wei, ZHAO Ming
2020, 19 (12): 2997-3012.   DOI: 10.1016/S2095-3119(20)63213-0
Abstract112)      PDF in ScienceDirect      
Double-maize cropping system is an effective option for coping with climate change in the North China Plain.  However, the effects of changes in climate on the growth and yield of maize in the two seasons are poorly understood.  Forty-six cultivars of maize with different requirements for growing degree days (GDD), categorized as high (H), medium (M) or low (L), and three cultivar combinations for two seasons as LH (using JD27 and DMY1 from category L in the first season; and YD629 and XD22 from category H in the second season), MM (using JX1 and LC3 from category M in the first season; and ZD958 and JX1 from category M in the second season) and HL (using CD30 and QY9 from category H in the first season; and XK10 and DMY3 from category L in the second season) were tested to examine the eco-physiological determinants of maize yield from 2015 to 2017.  The correlations between the combinations of cultivars and grain yield were examined.  The combination LH produced the highest annual grain yield and total biomass, regardless of the year.  It was followed, in decreasing order, by MM and HL.  Higher grain yield and biomass in LH were mainly due to the greater grain yield and biomass in the second season, which were influenced mainly by the lengths of the pre- and post-silking periods and the rate of plant growth (PGR).  Temperature was the primary factor that influenced dry matter accumulation.  In the first season, low temperatures during pre-silking decreased both the duration and PGR in LH, whereas high temperatures during post-silking decreased the PGR in MM and HL, resulting in no significant differences in biomass being observed among the three combinations.  In the second season, high temperatures decreased both the PGR and pre- and post-silking duration in MM and HL, and consequently, the biomass of those two combinations were lower than that in LH.  Moreover, because of lower GDD and radiation in the first season and higher grain yield in the second season, production efficiency of temperature and radiation (Ra) was the highest in LH.  More importantly, differences in temperature and radiation in the two seasons significantly affected the rate and duration of growth in maize, and thereby affecting both dry matter and grain yield.  Our study indicated that the combination of LH is the best for optimizing the double-maize system under changing climatic conditions in the North China Plain.
Reference | Related Articles | Metrics
Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain
LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen
2019, 18 (9): 2141-2152.   DOI: 10.1016/S2095-3119(19)62597-9
Abstract144)      PDF in ScienceDirect      
Over-use of N fertilizer in crop production has resulted in a series of environmental problems in the North China Plain (NCP).  Thus, improvement of nitrogen use efficiency (NUE) in summer maize has become an effective strategy for promoting sustainable agriculture in this region.  Using twenty maize cultivars, plant dry matter production, N absorption and accumulation, yield formation, and NUE in summer maize were investigated under three N levels in two growing seasons.  Based on their yield and yield components, these maize cultivars were categorized into four groups including efficient-efficient (EE) cultivars, high-nitrogen efficient (HNE) cultivars, low-nitrogen efficient (LNE) cultivars and nonefficient-nonefficient (NN) cultivars.  In both two seasons, the EE cultivars improved grain yield together with increased plant biomass, and enhanced accumulative amounts as well as higher average grain yields than the other cultivar groups under deficient-N conditions.  Significant correlations were observed between yield and kernel numbers (KN), dry matter (DM) amount and N accumulation at both post-silking and maturity stages.  DM and N accumulation at late growth stage (i.e., from silking to maturity) contributed largely to the enhanced yield capacity and improved NUE under N-deficient conditions.  Compared with the NN cultivars, the EE cultivars also showed increased N assimilation amount (NAA) and N remobilization content (NRC), and elevated N remobilization efficiency (NRE), NUE and nitrogen partial factor productivity (PFPN).  Our investigation has revealed N-associated physiological processes and may provide guidance for cultivation and breeding of high yield and NUE summer maize under limited N conditions in the NCP.
Reference | Related Articles | Metrics