Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of peanut oil origins based on Raman spectroscopy combined with multivariate data analysis methods
ZHU Peng-fei, YANG Qing-li, ZHAO Hai-yan
2022, 21 (9): 2777-2785.   DOI: 10.1016/j.jia.2022.07.026
Abstract237)      PDF in ScienceDirect      

This study aimed to use Raman spectroscopy to identify the producing areas of peanut oil and build a robust discriminant model to further screen out the characteristic spectra closely related to the origin.  Raman spectra of 159 peanut oil samples from different provinces and different cities of the same province were collected.  The obtained data were analyzed by stepwise linear discriminant analysis (SLDA), k-nearest neighbor analysis (k-NN), support vector machine (SVM) and multi-way analysis of variance.  The results showed that the overall recognition rate of samples based on full spectra was higher than 90%.  The producing origin, variety and their interaction influenced Raman spectra of peanut oil significantly, and 1 400–1 500 cm–1 and 1 600–1 700 cm–1 were selected as the characteristic spectra of origin and less affected by variety.  The best classification model established by SLDA combined with characteristic spectra could rapidly and accurately identify peanut oil’s origin.

Reference | Related Articles | Metrics
Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple
ZHU Ling-cheng, SU Jing, JIN Yu-ru, ZHAO Hai-yan, TIAN Xiao-cheng, ZHANG Chen, MA Feng-wang, LI Ming-jun, MA Bai-quan
2021, 20 (8): 2112-2125.   DOI: 10.1016/S2095-3119(20)63562-6
Abstract157)      PDF in ScienceDirect      
Hexokinase (HXK) is the first irreversible catalytic enzyme in the glycolytic pathway, which not only provides energy for plant growth and development but also serves as a signaling molecule in response to environmental changes.  However, the evolutionary pattern of the HXK gene family in apple remains unknown.  In this study, a total of nine HXK genes were identified in the Malus×domestica genome GDDH13 v1.1.  The physiological and biochemical properties, exon-intron structures, conserved motifs, and cis-elements of the MdHXK genes were determined.  Predicted subcellular localization indicated that the MdHXK genes were mainly distributed in the mitochondria, cytoplasm, and nucleus.  Gene duplication revealed that whole-genome duplication (WGD) and segmental duplication played vital roles in MdHXK gene family expansion.  The ω values of pairwise MdHXK genes indicated that this family was subjected to strong purifying selection during apple domestication.  Additionally, five subfamilies were classified, and recent/old duplication events were identified based on phylogenetic tree analysis.  Different evolutionary rates were estimated among the various HXK subfamilies.  Moreover, divergent expression patterns of the MdHXK genes in four source-sink tissues and at five different apple fruit developmental stages indicated that they play vital roles in apple fruit development and sugar accumulation.  Our study provides a theoretical basis for future elucidation of the biological functions of the MdHXK genes during apple fruit development.
Reference | Related Articles | Metrics