Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Calibration and validation of SiBcrop Model for simulating LAI and surface heat fluxes of winter wheat in the North China Plain
CHEN Ying, LIU Feng-shan, TAO Fu-lu, GE Quan-sheng, JIANG Min, WANG Meng, ZHAO Feng-hua
2020, 19 (9): 2206-2215.   DOI: 10.1016/S2095-3119(20)63178-1
Abstract127)      PDF in ScienceDirect      
The accurate representation of surface characteristic is an important process to simulate surface energy and water flux in land-atmosphere boundary layer.  Coupling crop growth model in land surface model is an important method to accurately express the surface characteristics and biophysical processes in farmland.  However, the previous work mainly focused on crops in single cropping system, less work was done in multiple cropping systems.  This article described how to modify the sub-model in the SiBcrop to realize the accuracy simulation of leaf area index (LAI), latent heat flux (LHF) and sensible heat flux (SHF) of winter wheat growing in double cropping system in the North China Plain (NCP).  The seeding date of winter wheat was firstly reset according to the actual growing environment in the NCP.  The phenophases, LAI and heat fluxes in 2004–2006 at Yucheng Station, Shandong Province, China were used to calibrate the model.  The validations of LHF and SHF were based on the measurements at Yucheng Station in 2007–2010 and at Guantao Station, Hebei Province, China in 2009–2010.  The results showed the significant accuracy of the calibrated model in simulating these variables, with which the R2, root mean square error (RMSE) and index of agreement (IOA) between simulated and observed variables were obviously improved than the original code.  The sensitivities of the above variables to seeding date were also displayed to further explain the simulation error of the SiBcrop Model.  Overall, the research results indicated the modified SiBcrop Model can be applied to simulate the growth and flux process of winter wheat growing in double cropping system in the NCP. 
Reference | Related Articles | Metrics
Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China
YANG Jian-ying, MEI Xu-rong, HUO Zhi-guo, YAN Chang-rong, JU Hui, ZHAO Feng-hua, LIU Qin
2015, 14 (10): 2065-2076.   DOI: 10.1016/S2095-3119(14)60951-5
Abstract1918)      PDF in ScienceDirect      
Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model (SEBAL) and crop information for assessment of regional crop (summer maize and winter wheat) actual evapotranspiration (ETa) in Huang-Huai-Hai (3H) Plain, China. The average seasonal ETa of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ETa belt of summer maize occurs in piedmont plain, while a low ETa area was found in the hill-irrigable land and dry land area. For winter wheat, a high-ETa area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hill-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ETa, normalized difference vegetation index (NDVI), and the land surface temperature (LST). A stronger relationship between ETa and NDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefficient values. Additionally, higher correlation coefficients were detected between ETa and LST than that between ETa and NDVI, and this significant relationship ran through the entire crop growing season. ETa in the summer maize growing season showed a significant relationship with longitude, while ETa in the winter wheat growing season showed a significant relationship with latitude. The results of this study will serve as baseline information for water resources management of 3H Plain.
Reference | Related Articles | Metrics