导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((ZHANG Wei-jian[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China?
ZHANG Ming, CHEN Tao, Hojatollah Latifmanesh, FENG Xiao-min, CAO Tie-hua, QIAN Chun-rong, DENG Ai-xing, SONG Zhen-wei, ZHANG Wei-jian
2018, 17 (
08
): 1745-1757. DOI:
10.1016/S2095-3119(17)61877-X
Abstract
(
508
)
PDF in ScienceDirect
A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesis-silking interval (ASI), and grain yield formation of two types of modern maize hybrids (Zhongdan 909 (ZD909) as tolerant hybrid to crowding stress, Jidan 209 (JD209) and Neidan 4 (ND4) as intolerant hybrids to crowding stress) in Northeast China. Plant densities of 4.50×10
4
(D1), 6.75×104 (D2), 9.00×10
4
(D3), 11.25×10
4
(D4), and 13.50×10
4
(D5) plants ha
–1
had no significant effects on initial time of tassel and ear differentiation of maize. Instead, higher plant density delayed the tassel and ear development during floret differentiation and sexual organ formation stage, subsequently resulting in ASI increments at the rate of 1.2–2.9 days on average for ZD909 in 2013–2014, 0.7–4.2 days for JD209 in 2013, and 0.5–3.7 days for ND4 in 2014, respectively, under the treatments of D2, D3, D4, and D5 compared to that under the D1 treatment. Total florets, silking florets, and silking rates of ear showed slightly decrease trends with the plant density increasing, whereas the normal kernels seriously decreased at the rate of 11.0–44.9% on average for ZD909 in 2013–2014, 2.0–32.6% for JD209 in 2013, and 9.7–28.3% for ND4 in 2014 with the plant density increased compared to that under the D1 treatment due to increased florets abortive rates. It was also observed that 100-kernel weight of ZD909 showed less decrease trend compared that of JD209 and ND4 along with the plant densities increase. As a consequence, ZD909 gained its highest grain yield by 13.7 t ha
–1
on average at the plant density of 9.00×104 plants ha
–1
, whereas JD209 and ND4 reached their highest grain yields by 11.7 and 10.2 t ha
–1
at the plant density of 6.75×104 plants ha
–1
, respectively. Our experiment demonstrated that hybrids with lower ASI, higher kernel number potential per ear, and relative constant 100-kernel weight (e.g., ZD909) could achieve higher yield under dense planting in high latitude area (e.g., Northeast China).
Reference
|
Related Articles
|
Metrics
Select
A possible mechanism of mineral responses to elevated atmospheric CO2 in rice grains
GUO Jia, ZHANG Ming-qian, WANG Xiao-wen, ZHANG Wei-jian
2015, 14 (
1
): 50-57. DOI:
10.1016/S2095-3119(14)60846-7
Abstract
(
1711
)
PDF in ScienceDirect
Increasing attentions have been paid to mineral concentration decrease in milled rice grains caused by CO2 enrichment, but the mechanisms still remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocation in plant-soil system with a FACE (Free-air CO2 enrichment) experiment were investigated in Eastern China after 4-yr operation. Results mainly showed that: (1) elevated CO2 significantly increased the biomass of stem and panicle by 21.9 and 24.0%, respectively, but did not affect the leaf biomass. (2) Elevated CO2 significantly increased the contents of Ca, Mg, Fe, Zn, and Mn in panicle by 61.2, 28.9, 87.0, 36.7, and 66.0%, respectively, and in stem by 13.2, 21.3, 47.2, 91.8, and 25.2%, respectively, but did not affect them in leaf. (3) Elevated CO2 had positive effects on the weight ratio of mineral/biomass in stem and panicle. Our results suggest that elevated CO2 can favor the translocation of Ca, Mg, Fe, Zn, and Mn from soil to stem and panicle. The CO2-led mineral decline in milled rice grains may mainly attribute to the CO2-led unbalanced stimulations on the translocations of minerals and carbohydrates from vegetative parts (e.g., leaf, stem, branch and husk) to the grains.
Reference
|
Related Articles
|
Metrics
Select
Impacts of Nighttime Warming on the Soil Nematode Community in a Winter Wheat Field of Yangtze Delta Plain, China
SONG Zhen-wei, ZHANG Bin, TIAN Yun-lu, DENG Ai-xing, ZHENG Cheng-yan, Md Nurul Islam, Md Abdul Mannaf , ZHANG Wei-jian
2014, 13 (
7
): 1477-1485. DOI:
10.1016/S2095-3119(14)60807-8
Abstract
(
1839
)
PDF in ScienceDirect
Changes in the soil nematode community induced by global warming may have a considerable influence on agro-ecosystem functioning. However, the impacts of predicted warming on nematode community in farmland (e.g., winter wheat field) have not been well documented. Therefore, a field experiment with free air temperature increase (FATI) was conducted to investigate the responses of the soil nematode community to nighttime warming in a winter wheat field of Yangtze Delta Plain, China, during 2007 to 2009. Nighttime warming (NW) by 1.8°C at 5-cm soil depth had no significant impact on the total nematode abundance compared to un-warmed control (CK). However, NW significantly affected the nematode community structure. Warming favored the bacterivores and fungivores, such as Acrobeles, Monhystera, Rhabditis, and Rhabdontolaimus in bacterivores, and Filenchus in fungivores, while the plant-parasites were hindered, such as Helicotylenchus and Psilenchus. Interestingly, the carnivores/ omnivores remained almost unchanged. Hence, the abundances of bacterivores and fungivores were significantly higher under NW than those under CK. Similarly, the abundances of plant-parasites were significantly lower under NW than under CK. Furthermore, Wasilewska index of the nematode community was significantly higher under NW than those under CK, indicating beneficial effect to the plant in the soil. Our results suggest that nighttime warming may improve soil fertility and decrease soil- borne diseases in winter wheat field through affecting the soil nematode community. It is also indicated that nighttime warming may promote the sustainability of the nematode community by altering genera-specific habitat suitability for soil biota.
Reference
|
Related Articles
|
Metrics