Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain
MENG Lu, ZHANG Li-zhen, QI Hai-kun, DU Ming-wei, ZUO Yan-li, ZHANG Ming-cai, TIAN Xiao-li, LI Zhao-hu
2021, 20 (11): 2892-2899.   DOI: 10.1016/S2095-3119(20)63280-4
Abstract147)      PDF in ScienceDirect      
Defoliation is an indispensable step in cotton production with mechanical harvesting, especially in the North China Plain (NCP) where mechanical harvesting is limited by a large proportion of green leaves and unopened bolls at harvest time due to insufficient thermal resources.  It is essential to quantify the optimal use of defoliation products while minimizing yield and quality loss in China.  The objective of this study was to test the effect of a new defoliant Xinsaili (XSL, a compound of 10% thidiazuron and 40% ethephon) on the spatial distribution of cotton leaves and bolls, yield and quality in the NCP.  There were four treatments: XSL 1 800 mL ha–1 , XSL 2 700 mL ha–1, XSL splitted into two equal applications (1 350 mL ha–1 for each), and XSL-free (water) control.  Field experiments were conducted in Hebei, China in 2016–2017.  All the defoliant treatments did not significantly affect cotton yield and fiber quality compared with the water control.  At harvest time, the rate of open bolls under XSL 2 700 mL ha–1 was 13.5% higher than that under XSL-free control, while the other two treatments showed no significant difference, across the two years.  Defoliation percentage of the three XSL treatments showed no difference, but they were on average 42.2% higher than that of XSL-free control.  The year-round effect of the defoliant XSL was significant, indicating that climate factors would affect its application.  It was concluded that the optimal dose of XSL in the NCP was 2 700 mL ha–1, and it was unnecessary to split it into two applications.  These results would promote cotton mechanical harvesting and reduce the labor cost of cotton production in China.
Reference | Related Articles | Metrics
Resource use efficiency, ecological intensification and sustainability of intercropping systems
MAO Li-li, ZHANG Li-zhen, ZHANG Si-ping, Jochem B Evers, Wopke van der Werf, WANG Jingjing, SUN Hong-quan, SU Zhi-cheng, Huub Spiertz
2015, 14 (8): 1542-1550.   DOI: 10.1016/S2095-3119(15)61039-5
Abstract2796)      PDF in ScienceDirect      
The rapidly growing demand for food, feed and fuel requires further improvements of land and water management, crop productivity and resource-use efficiencies. Combined field experimentation and crop growth modelling during the past five decades made a great leap forward in the understanding of factors that determine actual and potential yields of monocrops. The research field of production ecology developed concepts to integrate biological and biophysical processes with the aim to explore crop growth potential in contrasting environments. To understand the potential of more complex systems (multi-cropping and intercropping) we need an agro-ecosystem approach that integrates knowledge derived from various disciplines: agronomy, crop physiology, crop ecology, and environmental sciences (soil, water and climate). Adaptation of cropping systems to climate change and a better tolerance to biotic and abiotic stresses by genetic improvement and by managing diverse cropping systems in a sustainable way will be of key importance in food security. To accelerate sustainable intensification of agricultural production, it is required to develop intercropping systems that are highly productive and stable under conditions with abiotic constraints (water, nutrients and weather). Strategies to achieve sustainable intensification include developing tools to evaluate crop growth potential under more extreme climatic conditions and introducing new crops and cropping systems that are more productive and robust under conditions with abiotic stress. This paper presents some examples of sustainable intensification management of intercropping systems that proved to be tolerant to extreme climate conditions.
Reference | Related Articles | Metrics