Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of different mechanical direct seeding methods on grain yield and lodging resistance of early indica rice in South China
WANG Wen-xia, DU Jie, ZHOU Yan-zhi, ZENG Yong-jun, TAN Xue-ming, PAN Xiao-hua, SHI Qing-hua, WU Zi-ming, ZENG Yan-hua
2021, 20 (5): 1204-1215.   DOI: 10.1016/S2095-3119(20)63191-4
Abstract160)      PDF in ScienceDirect      
Direct seeding of rice has become a main planting method due to the low labor input and high economic benefit in South China.  Dry direct seeding (DDS) has been widely used for single-season rice planting establishment.  However, few studies have examined the performance of early-season indica rice under mechanical dry direct seeding.  A two-year field experiment was conducted with two indica rice cultivars (i.e., Zhongjiazao 17 and Zhuliangyou 819) to study lodging characteristics and grain yield formation under DDS, flooded direct seeding (FDS) and wet direct seeding (WDS) patterns.  The results showed that the annual grain yield in DDS was higher by 14.42–26.34% for cultivar ZLY819 and 6.64–24.58% for cultivar ZJZ17 than in WDS and FDS, respectively, and these increases were mainly attributed to the improvement of the panicles.  The DDS pattern significantly increased the seedling emergence rate of early indica rice cultivars, and increased total dry weight and crop growth rate.  Meanwhile, shorter basal internodes, better stem diameter and stem wall thickness and lower lodging index were found in DDS in contrast to FDS and WDS.  In particular, DDS improved the stem lodging resistance.  Our results suggested that the appropriate direct seeding method was beneficial for improving the grain yield and lodging resistance of early indica rice.
Reference | Related Articles | Metrics
Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China
HUANG Wan, WU Jian-fu, PAN Xiao-hua, TAN Xue-ming, ZENG Yong-jun, SHI Qing-hua, LIU Tao-ju, ZENG Yan-hua
2021, 20 (1): 236-247.   DOI: 10.1016/S2095-3119(20)63347-0
Abstract242)      PDF in ScienceDirect      
Long-term straw return is an important carbon source for improving soil organic carbon (SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China.  However, the specific effects of long-term rice straw management on SOC fractions, the related enzyme activities and their relationships, and whether these effects differ between crop growing seasons remain unknown.  Three treatments with equal nitrogen, phosphorus, and potassium nutrient inputs, including straw/ash and chemical nutrients, were established to compare the effects of straw removal (CK), straw return (SR), and straw burned return (SBR).  Compared to CK, long-term SR tended to improve the yield of early season rice (P=0.057), and significantly increased total organic carbon (TOC) and microbial biomass carbon (MBC) in double-cropped rice paddies.  While SBR had no effect on TOC, it decreased light fraction organic carbon (LFOC) in early rice and easily oxidizable organic carbon (EOC) in late rice, significantly increased dissolved organic carbon (DOC), and significantly decreased soil pH.  These results showed that MBC was the most sensitive indicator for assessing changes of SOC in the double-cropped rice system due to long-term straw return.  In addition, the different effects on SOC fraction sizes between SR and SBR were attributed to the divergent trends in most of the soil enzyme activities in the early and late rice that mainly altered DOC, while DOC was positively affected by β-xylosidase in both early and late rice.  We concluded that straw return was superior to straw burned return for improving SOC fractions, but the negative effects on soil enzyme activities in late rice require further research.
 
Reference | Related Articles | Metrics
Liming reduces soil phosphorus availability but promotes yield and P uptake in a double rice cropping system
LIAO Ping, Mart B. H. ROS, Natasja VAN GESTEL, SUN Yan-ni, ZHANG Jun, HUANG Shan, ZENG Yong-jun, WU Zi-ming, Kees Jan VAN GROENIGEN
2020, 19 (11): 2807-2814.   DOI: 10.1016/S2095-3119(20)63222-1
Abstract88)      PDF in ScienceDirect      
Liming is often applied to alleviate soil acidification and increase crop yield on acidic soils, but its effect on soil phosphorus (P) availability is unclear, particularly in rice paddies.  The objective of this study was to examine the effect of liming on rice production, yield and P uptake in a three-year field experiment in a double rice cropping system in subtropical China.  We also conducted an incubation experiment to investigate the direct effect of liming on soil available P and phosphatase activities on paddy soils in the absence of plants.  In the incubation experiment, liming reduced soil P availability (measured as Olsen-extractable P) by 14–17% and inhibited the activity of soil acid phosphatase.  Nonetheless, lime application increased grain yield, biomass, and P uptake in the field.  Liming increased grain yield and P uptake more strongly for late rice (26 and 21%, respectively) than for early rice (15 and 8%, respectively).  Liming reduced the concentration of soil available P in the field as well, reflecting the increase in rice P uptake and the direct negative effect of liming on soil P availability.  Taken together, these results suggest that by stimulating rice growth, liming can overcome direct negative effects on soil P availability and increase plant P uptake in this acidic paddy soil where P is not the limiting factor.
Reference | Related Articles | Metrics