Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Development of peanut varieties with high oil content by in vitro mutagenesis and screening
WANG Jing-shan, SHI Lei, LIU Yue, ZHAO Ming-xia, WANG Xia, QIAO Li-xian, SUI Jiong-ming, LI Guan, ZHU Hong, YU Shan-lin
2020, 19 (12): 2974-2982.   DOI: 10.1016/S2095-3119(20)63182-3
Abstract148)      PDF in ScienceDirect      
Peanut (Arachis hypogaea L.) is an important oil crop globally and high oil content is one of the major targets in peanut breeding programs.  Previous studies indicated that the osmotic pressure (OP) of the leaves of peanut plants subjected to drought stress was negatively correlated with kernel oil content.  Based on this knowledge, we established a practical and reliable method for creating new peanut varieties with high oil content using in vitro mutagenesis and directional OP-based selection.  Using embryonic leaflets of peanut variety Huayu 20 as explants, pingyangmycin (PYM) as the mutagen, and hydroxyproline (HYP) as the OP regulator, we developed 15 HYP-tolerant regenerated plants.  For each regenerated plant, we selected offspring with oil content>55% (relative to 49.5% for Huayu 20).  We developed and released three new peanut varieties with high yield and high oil content from the offspring of the HYP-tolerant regenerated plants.  The three new varieties were named as Yuhua 4, Yuhua 9 and Yuhua 14 and their oil contents were 57.7, 61.1 and 59.3%, respectively.  The results indicate that in vitro mutagenesis with PYM followed by directed screening with HYP is a useful approach for breeding peanut varieties with high oil contents.
Reference | Related Articles | Metrics
Functional Analysis of the Phosphoenolpyruvate Carboxylase on the Lipid Accumulation of Peanut (Arachis hypogaea L.) Seeds
PAN Li-juan, YANG Qing-li, CHI Xiao-yuan, CHEN Ming-na, YANG Zhen, CHEN Na, WANG Tong, WANG Mian, HE Ya-nan, YU Shan-lin
2013, 12 (1): 36-44.   DOI: 10.1016/S2095-3119(13)60203-8
Abstract1548)      PDF in ScienceDirect      
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) catalyses phosphoenolpyruvate (PEP) to yield oxaloacetate, which is involved in protein biosynthesis. Pyruvate kinase (PK; EC 2.7.1.40) catalyzes PEP to yield pyruvate, which is involved in fatty acid synthesis. In this study, five PEPC genes (AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4, and AhPEPC5) from peanut have been cloned. Using a quantitative real-time RT-PCR approach, the expression pattern of each gene was monitored during the seed development of four peanut varieties (E11, Hebeigaoyou, Naihan 1, and Huayu 26). It was found that these five genes shared similar expression behaviors over the developmental stages of E11 with high expression levels at 30 and 40 d after pegging (DAP); whereas these five genes showed irregular expression patterns during the seed development of Hebeigaoyou. In Naihan 1 and Huayu 26, the expression levels of the five genes remained relatively high in the first stage. The PEPC activity was monitored during the seed development of four peanut varieties and seed oil content was also characterized during whole period of seed development. The PEPC activity followed the oil accumulation pattern during the early stages of development but they showed a significantly negative correlation thereafter. These results suggested that PEPC may play an important role in lipid accumulation during the seed development of four peanut varieties tested.
Reference | Related Articles | Metrics