Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of chorion genes and RNA interference-mediated functional characterization of chorion-1 in Plutella xylostella
DONG Shi-jie, LIU Bo, ZOU Ming-min, LIU Li-li, CAO Min-hui, HUANG Meng-qi, LIU Yan, Liette VASSEUR, YOU Min-sheng, PENG Lu
2022, 21 (11): 3278-3292.   DOI: 10.1016/j.jia.2022.08.079
Abstract245)      PDF in ScienceDirect      

Choriogenesis is the last step of insect oogenesis, a process by which the chorion polypeptides are produced by the follicular cells and deposited on the surface of oocytes in order to provide a highly specialized protective barrier to the embryo.  The essential features of chorion genes have yet to be clearly understood in the diamondback moth, Plutella xylostella, a worldwide Lepidoptera pest attacking cruciferous crops and wild plants.  In this study, complete sequences for 15 putative chorion genes were identified, and grouped into A and B classes.  Phylogenetic analysis revealed that both classes were highly conserved and within each, branches are also species-specific.  Chorion genes from each class were located in pairs on scaffolds of the Pxylostella genome, some of which shared the common promoter regulatory region.  All chorion genes were highly specifically expressed in the Pxylostella adult females, mostly in the ovary with full yolk, which is a crucial period to build the shells of the eggs.  RNAi-based knockdown of chorion-1, which is located on the Px_scaffold 6 alone, although had no effect on yolk deposition, resulted in smaller eggs and sharply reduced hatchability.  Additionally, inhibition of PxCho-1 expression caused a less dense arrangement of the columnar layers, reduced exochorion roughness and shorter microvilli.  Our study provides the foundation for exploring molecular mechanisms of female reproduction in Pxylostella, and for making use of chorion genes as the potential genetic-based molecular target to better control this economically important pest.

Reference | Related Articles | Metrics
Functional analysis of the orphan genes Tssor-3 and Tssor-4 in male Plutella xylostella
LI Tian-pu, ZHANG Li-wen, LI Ya-qing, YOU Min-sheng, ZHAO Qian
2021, 20 (7): 1880-1888.   DOI: 10.1016/S2095-3119(21)63655-9
Abstract137)      PDF in ScienceDirect      
Orphan genes are genes with no sequence homologues in other species.  Here, we identified two orphan genes, namely, Tssor-3 and Tssor-4, in Plutella xylostella.  Both genes contained a signal peptide sequence, suggesting their functions as secreted proteins.  Expression pattern analysis based on real-time quantitative PCR (qPCR) showed that both orphan genes were specifically expressed in all male gonads except the testes.  The expression of both the orphan genes peaked at the male adult stage.  Immunofluorescence assays suggested that the two proteins were seminal proteins, indicating their potential roles in male reproductive regulation.  To further explain their functions, we knocked down the expression of these two genes by RNA interference (RNAi).  The results showed that the expression of Tssor-3 and Tssor-4 was significantly downregulated at 24 h after injection compared to that of the controls.  Biological assays showed that the number of laid eggs and the hatching rate of offspring eggs were significantly reduced when the expression of Tssor-3 and Tssor-4 was reduced, suggesting that the two orphan genes played a role in male fertility in P. xylostella.  Our results provide evidence that orphan genes are involved in male reproductive regulation, which is important for male fitness during evolution.
Reference | Related Articles | Metrics
Functional identification of C-type lectin in the diamondback moth, Plutella xylostella (L.) innate immunity
LI Jin-yang, LIN Jun-han, G. Mandela FERNáNDEZ-GRANDON, ZHANG Jia-yu, YOU Min-sheng, XIA Xiao-feng
2021, 20 (12): 3240-3255.   DOI: 10.1016/S2095-3119(21)63650-X
Abstract175)      PDF in ScienceDirect      
C-type lectins (CTLs) are a superfamily of Ca2+-dependent carbohydrate-recognition proteins, and an important pattern recognition receptor (PRR) in insect innate immunity which can mediate humoral and cellular immunity in insects.  In this study, we report a novel dual carbohydrate-recognition domain (CRD) CTL from Plutella xylostella which we designate PxIML.  PxIML is a protein with a 969 bp open reading frame (ORF) encoding 322 amino acids, containing a signal peptide and a dual-CRD with EPN (Glu124-Pro125-Asn126) and QPD (Gln274-Pro275-Asp276) motifs.  The expression of PxIML mRNA in the fat body was significantly higher than in hemocytes and midgut.  The relative expression levels of PxIML in the whole insect and the fat body were significantly inhibited after infection with Bacillus thuringiensis 8010 (Bt8010) at 18 h, while they were significantly upregulated after infection with Serratia marcescens IAE6 or Pichia pastoris.  The recombinant PxIML (rPxIML) protein could bind to the tested pathogen-associated molecular patterns (PAMPs), and the bacteria of Enterobacter sp. IAE5, S. marcescens IAE6, Staphylococcus aureus, Escherichia coli BL21, and Bt8010 in a Ca2+-dependent manner, however, it showed limited binding to the fungus, P. pastoris.  The rPxIML exhibited strong activity in the presence of Ca2+ to agglutinate Bt8010, Enterobacter sp. IAE5 and S. aureus, but it only weakly agglutinated with E. coli BL21, and could not agglutinate with S. marcescens IAE6 or P. pastoris.  Furthermore, the rPxIML could bind to hemocytes, promote the adsorption of hemocytes to beads, and enhance the phenoloxidase (PO) activity and melanization of P. xylostella.  Our results suggest that PxIML plays an important role in pathogen recognition and in mediating subsequent humoral and cellular immunity of P. xylostella.
Reference | Related Articles | Metrics