Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Post-silking nitrogen accumulation and remobilization are associated with green leaf persistence and plant density in maize
ZHANG Li-li, ZHOU Xiang-li, FAN Ye, FU Jun, HOU Peng, YANG Hai-long, QI Hua
2019, 18 (8): 1882-1892.   DOI: 10.1016/S2095-3119(18)62087-8
Abstract212)      PDF in ScienceDirect      
Abstract
Stay green (SG) maize was found to have higher grain yield and post-silking nitrogen (N) uptake (PostN) compared with a non-stay green (NSG) hybrid.  To understand the effects of plant density on grain yield (GY) and N efficiency in modern maize hybrids, we compared two modern hybrids (SG hybrid DY508 and NSG hybrid NH101) with similar maturity ratings at three plant densities (45 000, 60 000, and 75 000 pl ha–1) in 2014 and 2015.  GY, leaf senescence, dry matter (DM) accumulation, N accumulation, PostN, and post-silking N remobilization (RemN) were analyzed.  DY508 and NH101 had similar GY, but DY508 had higher thousand kernel weight (TKW) and lower kernel number (KN) than NH101.  Plant density significantly increased GY in the two hybrids.  On average, over the two years, plant density improved GY in DY508 and NH101 by 18.5 and 11.1%, respectively, but there were no differences in total dry matter (TDM) and post-silking DM (PostDM) between the two hybrids.  Plant density improved leaf N, stem N, and grain N at the silking and maturity stages in 2014 and 2015.  DY508 was lower in harvest index (HI), nitrogen harvest index (NHI), and grain N concentration (GNC) than NH101.  Grain N in DY508 was 2.61 kg ha–1 less than in NH101, and this was caused by lower GNC and leaf RemN.  On the average, DY508 was 1.62 kg ha–1 less in leaf remobilized N (leaf RemN) than NH101, but was similar in stem remobilized N (stem RemN; 2.47 kg ha–1 vs. 3.41 kg ha–1).  Maize hybrid DY508 shows delayed leaf senescence in the upper and bottom canopy layers in the later stages of growth.  The present study provides evidence that the NH101, which has rapid leaf senescence at the late grain-filling stage, has gained equivalent GY and higher leaf RemN, and was more efficient in N utilization.
Reference | Related Articles | Metrics
A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo
YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao
2018, 17 (09): 1972-1978.   DOI: 10.1016/S2095-3119(18)62023-4
Abstract610)      PDF (10046KB)(470)      
Phylogenetic trees based on genome-wide single nucleotide polymorphisms (SNPs) among diverse inbreds could provide valuable and intuitive information for breeding and germplasm management in crops.  As a result of sequencing technology developments, a huge amount of whole genome SNP data have become available and affordable for breeders.  However, it is a challenge to perform quick and reliable plotting based on the huge amount of SNP data.  To meet this goal, a visualization pipeline was developed and demonstrated based on publicly available SNP data from the current important maize inbred lines, including temperate, tropical, sweetcorn, and popcorn.  The detailed phylogenetic tree plotted by our pipeline revealed the authentic genetic diversity of these inbreds, which was consistent with several previous reports and indicated that this straightforward pipeline is reliable and could potentially speed up advances in crop breeding.
 
Reference | Related Articles | Metrics