导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((YAN Hai-jun[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain
CAI Dong-yu, YAN Hai-jun, LI Lian-hao
2020, 19 (
9
): 2326-2339. DOI:
10.1016/S2095-3119(19)62877-7
Abstract
(
136
)
PDF in ScienceDirect
In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency (WUE) and nitrogen use efficiency (NUE) have become a research hotspot. In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers (the R3000 sprinklers were installed in the first span, the corresponding treatment was RS; the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85A impact sprinkler as the end gun (the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE. The results showed that the water application uniformity coefficients of R3000, D3000 and P85A along the radial direction of the pivot (CU
H
) were 87.5, 79.5 and 65%, respectively. While the uniformity coefficients along the traveling direction of the pivot (CU
C
) were all higher than 85%. The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant (
P
>0.05); however, the average grain yield of EG was significantly lower (
P
<0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively. The coefficients of variation (CV) of the grain yield had a negative correlation with the uniformity coefficient. The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments. The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons. Although the CU
H
of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE. However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers. Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP.
Reference
|
Related Articles
|
Metrics
Select
A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain
ZHOU Li-li, LIAO Shu-hua, WANG Zhi-min, WANG Pu, ZHANG Ying-hua, YAN Hai-jun, GAO Zhen, SHEN Si, LIANG Xiao-gui, WANG Jia-hui, ZHOU Shun-li
2018, 17 (
05
): 1181-1193. DOI:
10.1016/S2095-3119(17)61818-5
Abstract
(
540
)
PDF
(1260KB)(
256
)
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain (NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency (WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications (full irrigation) using historical weather data from crop seasons over 33 years (1981–2014). The data were classified into three types according to seasonal precipitation: <100 mm, 100–140 mm, and >140 mm. Our results showed that the grain and biomass yield, harvest index (HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage (T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage (T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.
Reference
|
Related Articles
|
Metrics
Select
Estimation of irrigation requirements for drip-irrigated maize in a subhumid climate
LIU Yang, YANG Hai-shun, LI Jiu-sheng, LI Yan-feng, YAN Hai-jun
2018, 17 (
03
): 677-692. DOI:
10.1016/S2095-3119(17)61833-1
Abstract
(
714
)
PDF in ScienceDirect
Drip-irrigation is increasingly applied in maize (
Zea mays
L.) production in sub-humid region. It is critical to quantify irrigation requirements during different growth stages under diverse climatic conditions. In this study, the Hybrid-Maize model was calibrated and applied in a sub-humid Heilongjiang Province in Northeast China to estimate irrigation requirements for drip-irrigated maize during different crop physiological development stages and under diverse agro-climatic conditions. Using dimensionless scales, the whole growing season of maize was divided into diverse development stages from planting to maturity. Drip-irrigation dates and irrigation amounts in each irrigation event were simulated and summarized in 30-year simulation from 1981 to 2010. The maize harvest area of Heilongjiang Province was divided into 10 agro-climatic zones based on growing degree days, arid index, and temperature seasonality. The simulated results indicated that seasonal irrigation requirements and water stress during different growth stages were highly related to initial soil water content and distribution of seasonal precipitation. In the experimental site, the average irrigation amounts and times ranged from 48 to 150 mm with initial soil water content decreasing from 100 to 20% of the maximum soil available water. Additionally, the earliest drip-irrigation event might occur during 3- to 8-leaf stage. The water stress could occur at any growth stages of maize, even in wet years with abundant total seasonal rainfall but poor distribution. And over 50% of grain yield loss could be caused by extended water stress during the kernel setting window and grain filling period. It is estimated that more than 94% of the maize harvested area in Heilongjiang Province needs to be irrigated although the yield increase varied (0 to 109%) in diverse agro-climatic zones. Consequently, at least 14% of more maize production could be achieved through drip-irrigation systems in Heilongjiang Province compared to rainfed conditions.
Reference
|
Related Articles
|
Metrics