Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Change of soil productivity in three different soils after long-term field fertilization treatments
LIU Kai-lou, HAN Tian-fu, HUANG Jing, ZHANG Shui-qing, GAO Hong-jun, ZHANG Lu, Asad SHAH, HUANG Shao-min, ZHU Ping, GAO Su-duan, MA Chang-bao, XUE Yan-dong, ZHANG Hui-min
2020, 19 (3): 848-858.   DOI: 10.1016/S2095-3119(19)62742-5
Abstract116)      PDF in ScienceDirect      
Soil productivity (SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield. However, there have been difficulties in estimating values of SPs for soils after various long-term field treatments because the treatment without external fertilization is used but is depleted in soil nutrients, leading to erroneous estimation. The objectives of this study were to estimate the change of SP across different cropping seasons using pot experiments, and to evaluate the steady SP value (which is defined by the basal contribution of soil itself to crop yield) after various longterm fertilization treatments in soils at different geographical locations. The pot experiments were conducted in Jinxian of Jiangxi Province with paddy soil, Zhengzhou of Henan Province with fluvo-aquic soil, and Gongzhuling of Jilin Province with black soils, China. Soils were collected after long-term field fertilization treatments of no fertilizer (control; CK-F), chemical fertilizer (NPK-F), and combined chemical fertilizer with manure (NPKM-F). The soils received either no fertilizer (F0) or chemical fertilizer (F1) for 3–6 cropping seasons in pots, which include CK-P (control; no fertilizer from long-term field experiments for pot experiments), NPK-P (chemical fertilizer from long-term field experiments for pot experiments), and NPKM-P (combined chemical and organic fertilizers from long-term field experiments for pot experiments). The yield data were used to calculate SP values. The initial SP values were high, but decreased rapidly until a relatively steady SP was achieved at or after about three cropping seasons for paddy and fluvo-aquic soils. The steady SP values in the third cropping season from CK-P, NPK-P, and NPKM-P treatments were 37.7, 44.1, and 50.0% in the paddy soil, 34.2, 38.1, and 50.0% in the fluvo-aquic soil, with the highest value observed in the NPKM-P treatment for all soils. However, further research is required in the black soils to incorporate more than three cropping seasons. The partial least squares path mode (PLS-PM) showed that total N (nitrogen) and C/N ratio (the ratio of soil organic carbon and total N) had positive effects on the steady SP for all three soils. These findings confirm the significance of the incorporation of manure for attaining high soil productivity. Regulation of the soil C/N ratio was the other main factor for steady SP through fertilization management.
Reference | Related Articles | Metrics
Characteristics and Driven Factors of Nitrous Oxide and Carbon Dioxide Emissions in Soil Irrigated with Treated Wastewater
XUE Yan-dong, YANG Pei-ling, LUO Yuan-pei, LI Yun-kai, REN Shu-mei, SU Yan-ping, NIU Yongtao
2012, 12 (8): 1354-1364.   DOI: 10.1016/S1671-2927(00)8666
Abstract1077)      PDF in ScienceDirect      
The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations of salts, Escherichia coli and presence of dissolved organic matter, and inorganic N after secondary treatment, among others. Its application could thus cause environmental consequences such as soil salinization, ammonia volatilization, and greenhouse gas emissions. In an incubation experiment, we evaluated the characteristics and effects of water-filled pore space (WFPS) and N input on the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) from silt loam soil receiving treated wastewater. Irrigation with treated wastewater (vs. distilled water) significantly increased cumulative N2O emission in soil (117.97 μg N kg-1). Cumulative N2O emissions showed an exponentially increase with the increasing WFPS in unamended soil, but the maximum occurred in the added urea soil incubated at 60% WFPS. N2O emissions caused by irrigation with treated wastewater combined with urea-N fertilization did not simply add linearly, but significant interaction (P<0.05) caused lower emissions than the production of N2O from the cumulative effects of treated wastewater and fertilizer N. Moreover, a significant impact on cumulative CO2 emission was measured in soil irrigated with treated wastewater. When treated wastewater was applied, there was significant interaction between WFPS and N input on N2O emission. Hence, our results indicated that irrigation with treated wastewater should cause great concern for increasing global warming potential due to enhanced emission of N2O and CO2.
Reference | Related Articles | Metrics