Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The effect of amylose on kernel phenotypic characteristics, starch-related gene expression and amylose inheritance in naturally mutated high-amylose maize
ZHANG Xu-dong, GAO Xue-chun, LI Zhi-wei, XU Lu-chun, LI Yi-bo, ZHANG Ren-he, XUE Ji-quan, GUO Dong-wei
2020, 19 (6): 1554-1564.   DOI: 10.1016/S2095-3119(19)62779-6
Abstract122)      PDF in ScienceDirect      
High-amylose maize starch has great potential for widespread industrial use due to its ability to form strong gels and film and in the food processing field, thus serving as a resistant starch source.  However, there is still a substantial shortage of high-amylose maize due to the limitation of natural germplasm resources, although the well-known amylose extender (ae) gene mutants have been found to produce high-amylose maize lines since 1948.  In this context, high-amylose maize lines (13 inbreds and 18 hybrids) originating from a natural amylose mutant in our testing field were utilized to study the correlation between amylose content (AC) and phenotypic traits (kernel morphology and endosperm glossiness), grain filling characteristics, gene expression, and amylose inheritance.  Our results showed that AC was negatively correlated with total starch content but was not correlated with grain phenotypes, such as kernel fullness, kernel morphology and endosperm glossiness.  Maize lines with higher amylose had a greater grain filling rate than that of the control (B73) during the first 20 days after pollination (DAP).  Both starch debranching enzyme (DBE) groups and starch branching enzyme IIb (SBEIIb) groups showed a greater abundance in the control (B73) than in the high-amylose maize lines.  Male parents directly predicted AC of F1, which was moderately positively correlated with the F2 generation.
 
Reference | Related Articles | Metrics
QTL mapping for leaf area in maize (Zea mays L.) under multi-environments
CUI Ting-ting, HE Kun-hui, CHANG Li-guo, ZHANG Xing-hua, XUE Ji-quan, LIU Jian-chao
2017, 16 (04): 800-808.   DOI: 10.1016/S2095-3119(16)61524-1
Abstract1119)      PDF in ScienceDirect      
Leaves are the main organs of photosynthesis in green plants.  Leaf area plays a vital role in dry matter accumulation and grain yield in maize (Zea mays L.).  Thus, investigating the genetic basis of leaf area will aid efforts to breed maize with high yield.  In this study, a total of 150 F7 recombinant inbred lines (RILs) derived from a cross between the maize lines Xu 178 and K12 were used to evaluate three ear-leaves area (TELA) under multi-environments.  Inclusive composite interval mapping (ICIM) was used to identify quantitative trait loci (QTLs) for TELA under a single environment and estimated breeding value (EBV).  A total of eight QTLs were detected under a single environmental condition, and four QTLs were identified for EBV which also can be detected in single environment.  This indicated that the EBV-detected QTLs have high genetic stability.  A major QTL (qTELA_2-9) located in chromosome bin 2.04/2.05 could be detected in four environments and has a high phenotypic contribution rate (ranging from 10.79 to 16.51%) that making it a good target for molecular breeding.  In addition, joint analysis was used to reveal the genetic basis of leaf area in six environments.  In total, six QTL×environment interactions and nine epistatic interactions were identified.  Our results reveal that the genetic basis of the leaf area is not only mainly determined by additive effects, but also affected by epistatic effects environmental interaction effects.
Reference | Related Articles | Metrics