Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genome-wide identification and expression profiling of MYB transcription factor genes in radish (Raphanus sativus L.)
Everlyne M’mbone MULEKE, WANG Yan, ZHANG Wan-ting, XU Liang, YING Jia-li, Bernard K. KARANJA, ZHU Xian-wen, FAN Lian-xue, Zarwali AHMADZAI, LIU Li-wang
2021, 20 (1): 120-131.   DOI: 10.1016/S2095-3119(20)63308-1
Abstract200)      PDF in ScienceDirect      
Radish (Raphanus sativus L.), an important root vegetable crop of the Brassicaceae family, has a high level of anthocyanin accumulation in its pigment root tissues.  It was reported that MYB transcription factors (TFs) play vital roles in plant development and anthocyanin metabolism, and the PAP1/2 could promote expression of anthocyanin biosynthesis genes.  In this study, a total of 187 radish MYB genes (RsMYBs) were identified in the radish genome and clustered into 32 subfamilies.  Among them, 159 RsMYBs were localized on nine radish chromosomes.  Interestingly, 14 RsMYBs exhibited differential expression profiles in different taproot developmental stages among four differently colored radish lines.  A number of RsMYBs were highly expressed in the pigmented root tissues at the maturity stage, several genes including RsMYB41, RsMYB117, and RsMYB132 being homologous to PAP1/2, showed high expression levels in the red skin of NAU-YH (red skin-white flesh) taproot, while RsMYB65 and RsMYB159 were highly expressed in the purple root skin of NAU-YZH (purple skin-red flesh), indicating that these RsMYBs might positively regulate the process of anthocyanin accumulation in radish taproot.  These results would provide valuable information for further functional characterization of RsMYBs, and facilitate clarifying the molecular mechanism underlying anthocyanin biosynthesis in radish.
 
Reference | Related Articles | Metrics
Isolation and molecular characterization of the FLOWERING LOCUS C gene promoter sequence in radish (Raphanus sativus L.)
XU Yuan-yuan, WANG Jing, NIE Shan-shan, HUANG Dan-qiong, WANG Yan, XU Liang, WANG Rong-hua, LUO Xiao-bo, LIU Li-wang
2016, 15 (4): 763-774.   DOI: 10.1016/S2095-3119(15)61295-3
Abstract1272)      PDF in ScienceDirect      
Both bolting and flowering times influence taproot and seed production in radish. FLOWERING LOCUS C (FLC) plays a key role in plant flowering by functioning as a repressor. Two genomic DNA sequences, a 3 046-bp from an early- and a 2 959-bp from a late-bolting radish line were isolated and named as RsFLC1 and RsFLC2, respectively, for they share approximately 87.03% sequence identity to the FLC cDNA sequences. The genomic DNA sequences, 1 466-bp and 1 744-bp, flanking the 5´-regions of RsFLC1 and RsFLC2, respectively, were characterized. Since both of them harbor the basic promoter elements, the TATA box and CAAT box, they were designated as PRsFLC1 and PRsFLC2. The transcription start site (TSS) was identified at 424 and 336 bp upstream of the start codon in PRsFLC1 and PRsFLC2, respectively. cis-regulatory elements including CGTCA (MeJA-responsive) and ABRE (abscisic acid-responsive) motifs were found in both promoters, while some cis-regulatory elements including TCA element and GARE-motif were present only in PRsFLC1. These sequence differences lead to the diversity of promoter core elements, which could partially result in the difference of bolting and flowering time in radish line NauDY13 (early-bolting) and Naulu127 (late-bolting). Furthermore, to investigate the activity of these promoters, a series of 5´-deletion fragment-GUS fusions were constructed and transformed into tobacco. GUS activity was detected in PRsFLC1-(1 to 4)-GUS-PS1aG-3 and PRsFLC2-(1 to 4)-GUS-PS1aG-3 transgenic tobacco leaf discs, and this activity progressively decreased from PRsFLC-1-GUS-PS1aG-3 to PRsFLC-5-GUS-PS1aG-3. Deletion analysis indicated that the cis-regulatory elements located at –395 bp to +1 bp may be critical for specifying RsFLC gene transcription.
Reference | Related Articles | Metrics
Secondary metabolites of rice sheath blight pathogen Rhizoctonia solani Kühn and their biological activities
XU Liang, WANG Xiao-han, LUO Rui-ya, LU Shi-qiong, GUO Ze-jian, WANG Ming-an, LIU Yang, ZHOU Li-gang
2015, 14 (1): 80-87.   DOI: 10.1016/S2095-3119(14)60905-9
Abstract2057)      PDF in ScienceDirect      
Eight compounds were isolated from the fermentation cultures of rice sheath blight pathogen Rhizoctonia solani Kühn. They were identified as ergosterol (1), 6β-hydroxysitostenone (2), sitostenone (3), m-hydroxyphenylacetic acid (4), methyl m-hydroxyphenylacetate (5), m-hydroxymethylphenyl pentanoate (6), (Z)-3-methylpent-2-en-1,5-dioic acid (7) and 3-methoxyfuran-2-carboxylic acid (8) by means of physicochemical and spectroscopic analysis. Among them, 2, 3, 5–8 were isolated from R. solani for the first time. All the compounds were evaluated for their biological activities. 4–6 and 8 showed their inhibitory activities on the radical and germ elongation of rice seeds. 1, 4 and 7 showed moderate antibacterial activity to some bacteria. 4, 7 and 8 exhibited weak inhibitory activities on spore germination of Magnaporthe oryzae. 8 showed moderate antioxidant activity with the 1,1-diphenyl-2-picryhydrazyl (DPPH) and β-carotene-linoleic acid assays. This is the first time to reveal compounds 5, 6 and 8 from rice sheath blight pathogen R. solani to have in vitro phytotoxic activity.
Reference | Related Articles | Metrics
Molecular Characterization and Expression Profiles of Myrosinase Gene (RsMyr2) in Radish (Raphanus sativus L.)
PAN Yan1, XU Yuan-yuan1, ZHU Xian-wen2, LIU Zhe1, GONG Yi-qin1, XU Liang1, GONG Mao-yong1, and LIU Li-wang1
2014, 13 (9): 1877-1888.   DOI: 10.1016/S2095-3119(13)60644-9
Abstract1298)      PDF in ScienceDirect      
Myrosinase is a defense-related enzyme and is capable of hydrolyzing glucosinolates into a variety of compounds, some of which are toxic to pathogens and herbivores. Many studies revealed that a number of important vegetables or oil crops contain the myrosinase-glucosinolate system. However, the related promoter and genomic DNA sequences as well as expression profiles of myrosinase gene remain largely unexplored in radish (Raphanus sativus). In this study, the 2 798 bp genomic DNA sequence, designated as RsMyr2, was isolated and analyzed in radish. The RsMyr2 consisting of 12 exons and 11 introns reflected the common gene structure of myrosinases. Using the genomic DNA walking approach, the 5´-flanking region upstream of RsMyr2 with length of 1 711 bp was successfully isolated. PLACE and PlantCARE analyses revealed that this upstream region could be the promoter of RsMyr2, which contained several basic cis-regulatory elements including TATA-box, CAAT-box and regulatory motifs responsive to defense and stresses. Furthermore, recombinant pET-RsMyr2 protein separated by SDS-PAGE was identified as myrosinase with mass spectrometry. Real-time PCR analysis showed differential expression profiles of RsMyr2 in leaf, stem and root at different developmental stages (e.g., higher expression in leaf at cotyledon stage and lower in flesh root at mature stage). Additionally, the RsMyr2 gene exhibited up-regulated expression when treated with abscisic acid (ABA), methyl jasmonate (MeJA) and hydrogen peroxide (H2O2), whereas it was down-regulated by wounding (WO) treatment. The findings indicated that the expression of RsMyr2 gene was differentially regulated by these stress treatments. These results could provide new insight into elucidating the molecular characterization and biological function of myrosinase in radish.
Reference | Related Articles | Metrics
Identification and Molecular Mapping of the RsDmR Locus Conferring Resistance to Downy Mildew at Seedling Stage in Radish (Raphanus sativus L.)
XU Liang, JIANG Qiu-wei, WU Jian, WANG Yan, GONG Yi-qin, WANG Xian-li, Limera Cecilia , LIU Li-wang
2014, 13 (11): 2362-2369.   DOI: 10.1016/S2095-3119(14)60792-9
Abstract1245)      PDF in ScienceDirect      
Downy mildew (DM), caused by the fungus Peronospora parasitica, is a destructive disease of radish (Raphanus sativus L.) worldwide. Host resistance has been considered as an attractive and environmentally friendly approach to control the disease. However, the genetic mechanisms of resistance in radish to the pathogen remain unknown. To determine the inheritance of resistance to DM, F1, F2 and BC1F1 populations derived from reciprocal crosses between a resistant line NAU-dhp08 and a susceptible line NAU-qtbjq-06 were evaluated for their responses to DM at seedling stage. All F1 hybrid plants showed high resistance to DM and maternal effect was not detected. The segregation for resistant to susceptible individuals statistically fitted a 3:1 ratio in two F2 populations (F2(SR) and F2(RS)), and 1:1 ratio in two BC1F1 populations, indicating that resistance to DM at seedling stage in radish was controlled by a single dominant locus designated as RsDmR. A total of 1 972 primer pairs (1036 SRAP, 628 RAPD, 126 RGA, 110 EST-SSR and 72 ISSR) were screened, and 36 were polymorphic between the resistant and susceptible bulks, and consequently used for genotyping individuals in the F2 population. Three markers (Em9/ga24370, NAUISSR826700 and Me7/em10400) linked to the RsDmR locus within a 10.0 cM distance were identified using bulked segregant analysis (BSA). The SRAP marker Em9/ga24370 was the most tightly linked one with a distance of 2.3 cM to RsDmR. These markers tightly linked to the RsDmR locus would facilitate marker-assisted selection and resistance gene pyramiding in radish breeding programs.
Reference | Related Articles | Metrics