Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat
ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
2023, 22 (5): 1366-1380.   DOI: 10.1016/j.jia.2022.08.029
Abstract225)      PDF in ScienceDirect      

Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.  This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.  With six sowing dates, the experiments were carried out in Donghai and Jianhu counties, Jiangsu Province, China using two semi-winter wheat varieties as the objects of this study.  The basic seedlings of the first sowing date (S1) were planted at 300×104 plants ha−1, which was increased by 10% for each of the delayed sowing dates (S2–S6).  The results showed that the delay of sowing date decreased the number of days, the effective accumulated temperature and the cumulative solar radiation in the whole growth period.  The yields of S1 were higher than those of S2 to S6 by 0.22–0.31, 0.5–0.78, 0.86–0.98, 1.14–1.38, and 1.36–1.59 t ha–1, respectively.  For a given sowing date, the growth days increased as the ecological point was moved north, while both mean daily temperature and effective accumulative temperature decreased, but the cumulative radiation increased.  As a result, the yields at Donghai County were 0.01–0.39 t ha–1 lower than those of Jianhu County for the six sowing dates.  The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.  The average temperature was significantly negatively correlated with the yield.  The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.

Reference | Related Articles | Metrics
Comparison of grain yield and quality of different types of japonica rice cultivars in the northern Jiangsu plain, China
BIAN Jin-long, REN Gao-lei, XU Fang-fu, ZHANG Hong-cheng, WEI Hai-yan
2021, 20 (8): 2065-2076.   DOI: 10.1016/S2095-3119(20)63348-2
Abstract169)      PDF in ScienceDirect      
In recent years, an increasing number of different types of japonica rice cultivars have been released in the southern rice region of China.  The grain yield and quality of these new cultivars showed significant differences in large scale planting.  However, the causes of the differences remain little known.  Therefore, three typical types of japonica rice cultivars were used in this study to investigate their grain yield and quality.  A scanning calorimeter (DSC), X-ray powder diffractometer (XRD), rapid viscosity analyzer (RVA) and taste analyzer were used to evaluate the cooking and eating properties.  The results showed that the yield of non-soft hybrid japonica rice cultivars was significantly higher than that of non-soft inbred japonica rice cultivars and soft inbred japonica rice cultivars.  Soft inbred japonica rice cultivars had a low amylose content and moderate protein content, which are the main reasons for the superior cooking and eating quality.  In addition, the relative crystallinity of soft inbred japonica rice cultivars was significantly higher than that of non-soft inbred and non-soft hybrid japonica rice cultivars, which is considered the major factor resulting in higher transition temperature and gelatinization enthalpy (ΔHgel).  Non-soft hybrid japonica rice cultivars had a higher number of large starch granules than soft inbred and non-soft inbred japonica rice cultivars.  The setback value (SB) and breakdown value (BD), indirectly reflecting the cooking and eating quality of the three types of japonica rice cultivars, also confirmed that soft inbred japonica rice cultivars with a low SB value and a high BD value had better palatability than the other two types.  This study provides guidance for future plantation of different types of japonica rice cultivars in large rice-producing areas.
Reference | Related Articles | Metrics
Comparative analysis on grain quality and yield of different panicle weight indica-japonica hybrid rice (Oryza sativa L.) cultivars
BIAN Jin-long, REN Gao-lei, HAN Chao, XU Fang-fu, QIU Shi, TANG Jia-hua, ZHANG Hong-cheng, WEI Hai-yan, GAO Hui
2020, 19 (4): 999-1009.   DOI: 10.1016/S2095-3119(19)62798-X
Abstract113)      PDF in ScienceDirect      
Indica-japonica hybrid rice (Oryza sativa L.) cultivars showed high yield potential and poor tasting quality when compared with common japonica rice cultivars.  Large panicle is a prominent factor of high yield for indica-japonica hybrid rice cultivars, and the panicle weight varies greatly among different indica-japonica hybrid rice cultivars.  It is important to research on yield and grain quality of different panicle weight indica-japonica hybrid rice cultivars.  In this study, two different panicle types indica-japonica hybrid cultivars were used to research on the relation of yield and grain quality.  The yields of two heavy panicle weights indica-japonica hybrid cultivars were significantly higher than that of two medium panicle weight rice cultivars.  The cooking and eating quality and starch properties of different panicle type cultivars were evaluated.  Yongyou 6715 (medium panicle) and Yongyou 1852 (heavy panicle) got the relatively higher cooking and eating quality.  Rice cultivars with medium panicle weight had more large starch granules and higher relative crystallinity than cultivars with heavy panicle weight.  Transition temperature and retrogradation enthalpy (ΔHret) of medium panicle type cultivars were significantly higher than that of heavy panicle type cultivars.  There was no significant difference in amylose content among different panicle type cultivars.  Protein content of heavy panicle type cultivar was higher than that of medium panicle type cultivar, and protein content is the main factor affect cooking and eating quality in this study.  The cultivar Yongyou 6715 got the highest taste value with the lowest protein content.  Thus, it is suggested that the emphasis on improving rice cooking and eating quality of indica-japonica hybrid rice cultivars is how to reduce the protein content in rice grain.  According to the results of this study, medium panicle type with high grain weight is the desired panicle type for high quality indica-japonica hybrid rice breeding.
 
Reference | Related Articles | Metrics
Effects of planting methods on yield and quality of different types of japonica rice in northern Jiangsu plain, China
BIAN Jin-long, XU Fang-fu, HAN Chao, QIU Shi, GE Jia-lin, XU Jing, ZHANG Hong-cheng, WEI Hai-yan
2018, 17 (12): 2624-2635.   DOI: 10.1016/S2095-3119(18)62141-0
Abstract395)      PDF in ScienceDirect      
Mechanical transplanting with carpet seedlings (MC) and mechanical direct seeding (MD) are newly developed planting methods, which increase in popularity and planted area each year. Knowing the difference for yield and rice quality under different planting methods is of great importance for the development of high quality and yield cultivation techniques under mechanical conditions. Therefore, three kinds of japonica rice including hybrid japonica rice, inbreed japonica rice, and soft rice were adopted as materials. And the differences in the quality of processing, appearance, cooking and eating quality, nutrition, and the rapid viscosity analyzer (RVA) profile were studied to reveal the effects of planting methods on yield and quality of different types of japonica rice. Results showed that the milled rice and head rice rates under MC was significantly higher than those under MD, and the processing quality of inbreed japonica rice was the most stable. Compared with MC, length/width ratio of rice under MD was significantly increased, and chalkiness rate, size, and degree were significantly decreased. The protein content under MD was lower than that under MC. MC showed higher peak viscosity and breakdown value than MD. The taste value was the greatest for soft rice, followed by inbreed japonica rice, and then by japonica hybrid rice, with no significant differences resulting from planting methods. Compared with MC, MD significantly improved the appearance quality, though processing quality and nutritional quality were decreased. And there was no significant difference in cooking and eating quality between MC and MD. Under different planting methods, the appearance quality of inbreed japonica rice changed the most and the processing quality was the most stable. The nutritional, cooking and eating quality of soft rice changed the least. Therefore, according to the different planting methods and market needs, selecting the appropriate rice varieties can reduce the risks in rice production and achieve good rice quality.
Reference | Related Articles | Metrics