Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Cotton maturity and responses to harvest aids following chemical topping with mepiquat chloride during bloom period
QI Hai-kun, DU Ming-wei, MENG Lu, XIE Liu-wei, A. Egrinya ENEJI, XU Dong-yong, TIAN Xiao-li, LI Zhao-hu
2022, 21 (9): 2577-2587.   DOI: 10.1016/j.jia.2022.07.008
Abstract239)      PDF in ScienceDirect      

Early maturity, complete defoliation and boll opening are essential for the efficient machine harvesting of cotton.  Chemical topping, involving one extra application of mepiquat chloride (MC) in addition to its traditional multiple-application strategy, may be able to replace manual topping.  However, it is not known whether this chemical topping technique will influence maturity or cotton responses to harvest aids.  In this 2-yr field study, we determined the effects of the timing of chemical topping using various rates of MC on boll opening percentage (BOP) before application of harvest aids (50% thidiazuron·ethephon suspension concentrate, referred to as TE), and the defoliation percentage (DP) and BOP 14 days after TE application.  The results indicated that late chemical topping (near the physiological cutout, when the nodes above white flower is equal to 5.0) significantly decreased BOP before TE by 5.9–11.2% compared with early (at peak bloom) or middle (seven days after peak bloom) treatments in 2019, which was a relatively normal year based on crop condition.  Also, a high MC rate (270 g ha–1) showed a significantly lower (22.0%) BOP before TE than low (90 g ha–1) or medium (180 g ha–1) rates.  In 2020, which was characterized by stronger vegetative growth in the late season, the late chemical topping reduced the number of leaves before TE application relative to early or middle treatments, but had lower DP (23.2–27.2%) 14 days after TE application.  The high MC rate showed a leaf count before TE application that was similar to the low and medium rates, but it showed the most leaves after TE and much lower (15.0–21.7%) DP in 2020.  These results suggest that late timing of chemical topping and a high MC rate decreased the sensitivity of leaves to harvest aids.  Further analysis indicated that the late chemical topping mainly affected the leaf drop from the mainstem and fruiting branches where the late regrowth occurred, and the high MC rate reduced leaf shedding from these parts and also from the vegetative branches.  In conclusion, chemical topping with MC during the bloom period affected cotton maturity and responses to harvest aids in different ways according to the crop condition.  To avoid the risks of delayed maturity and poor defoliation after the application of harvest aids, chemical topping should not be performed too late (i.e., near the physiological cutout) by using MC at more than 180 g ha–1.  The optimum timing of chemical topping probably varies from peak bloom to around seven days later, and the safest MC rates for chemical topping should be less than 180 g ha–1.

Reference | Related Articles | Metrics
Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936
LIANG Jin-gang, ZHANG Dan-dan, LI Dong-yang, ZHAO Sheng-yuan, WANG Chen-yao, XIAO Yu-tao, XU Dong, YANG Yi-zhong, LI Guo-ping, WANG Li-li, GAO Yu, YANG Xue-qing, YUAN Hai-bin, LIU Jian, ZHANG Xiu-jie, WU Kong-ming
2021, 20 (3): 792-803.   DOI: 10.1016/S2095-3119(20)63475-X
Abstract164)      PDF in ScienceDirect      
The fall armyworm (FAW) Spodoptera frugiperda, which originated in the Americas, is advancing across China and threatening the nation’s maize crops.  Currently, one widely used tool for its control is genetically modified (GM) Bacillus thuringiensis (Bt) maize.  Sufficient content of Bt protein in appropriate plant parts is crucial for enhancing resistance against insect pests.  In this study, we conducted a systematic investigation of Cry1Ab levels in Chinese domestic GM maize DBN9936, which has recently obtained a biosafety certificate, and evaluated its efficacy against FAW.  Quantification of expression levels of Cry1Ab, via ELISA, indicated a spatio-temporal dynamic, with significant variation of mean Cry1Ab, ranging from 0.76 to 8.48 μg g–1 FW with the Cry1Ab protein level ranked as: V6–V8 leaf>R1 leaf>R4 leaf>R1 silk>VT tassel>R4 kernel.  Among the nine locations, the Cry1Ab levels in DBN9936 of the Xinxiang, Langfang, and Harbin fields were significantly lower than those from Wuhan and Shenyang, and were slightly, but not significantly lower than those from the other four fields.  Furthermore, the artificial diet–Cry1Ab mixture and plant tissue feeding bioassays revealed that DBN9936 has high efficacy against FAW.  The insecticidal efficacy of different tissues against FAW larvae reached 34–100% with a descending order of lethality as follows: VT leaf>R4 leaf>R1 husk>R1 silk>VT tassel>R4 kernel.  Taken together, our results showed that Bt-Cry1Ab maize DBN9936 has potential as a promising strategy to manage FAW.
 
Reference | Related Articles | Metrics
Yield characteristics of japonica/indica hybrids rice in the middle and lower reaches of the Yangtze River in China
XU Dong, ZHU Ying, CHEN Zhi-feng, HAN Chao, HU Lei, QIU Shi, WU Pei, LIU Guo-dong, WEI Hai-yan, ZHANG Hong-cheng
2020, 19 (10): 2394-2406.   DOI: 10.1016/S2095-3119(19)62872-8
Abstract103)      PDF in ScienceDirect      
Although a lot of researches have been done on yield characteristics of japonica/indica hybrid rice, there is little information on differences of yield characteristics between different types of hybrid.  To determine common characteristics of japonica/indica hybrid rice (JIHR) and identify the differences between different types of JIHR, the present study assessed yield characteristics, such as panicle trait, leaf area index (LAI), above-ground biomass accumulation, and nitrogen absorption and utilization, among three types of cultivar of JIHR.  In our field experiments, three types of JIHR, e.g., Yongyou, Chunyou and Jiayouzhongke, were divided, and each of them has two cultivars, which were used as materials, meanwhile, using conventional japonica rice (CJR) Wuyingjing 31 and Sujing 9 were as controls.  The results showed that the mean yield of those JIHR was above 12 t ha–1 in 2017 and 2018, and was 31.9 and 32.2%, respectively higher than that of CJR in the two years.  Spikelet number per panicle of JIHR resulted in high yield.  Higher yield of JIHR was likely contributed to greater panicle number and more spikelets per panicle.  Higher yielding JIHR showed stronger tillering capacity, larger LAI and above-ground biomass accumulation from jointing to heading stages, which likely contributed to the higher number of spikelets per panicle.  The long duration from heading to maturity stages allowed more nitrogen accumulation of higher yielding JIHR.
Reference | Related Articles | Metrics
Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice
WEI Hai-yan, ZHU Ying, QIU Shi, HAN Chao, HU Lei, XU Dong, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, CUI Pei-yuan, DAI Qi-gen, ZHANG Hong-cheng
2018, 17 (11): 2405-2417.   DOI: 10.1016/S2095-3119(18)62025-8
Abstract369)      PDF (1180KB)(727)      
There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice.  Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality.  At a low N level (150 kg N ha–1, 150N), grain yield decreased (by 21.07–26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment.  These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle.  At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46–10.60%) due to the lower grain weight per panicle.  The interaction of shading and N level had a significant effect on the number of primary and secondary branches.  A high level of N (300 kg N ha–1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments.  In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18–5.91% in 150N BH.  In 150N AH, the grain weight was 13.39–13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax).  In inferior grains, grain weight and GRmean had a tendency of 150N NS>150N BH>150N AH.  Under shaded conditions, 300N decreased the grain weight due to lower GRmean both in superior and inferior grains.  Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH.  Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness.  Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.
 
Reference | Related Articles | Metrics
Fatty acid analysis in the seeds of 50 Paeonia ostii individuals from the same population
WEI Xiao-bao, XUE Jing-qi, WANG Shun-li, XUE Yu-qian, LIN Huan, SHAO Xing-feng, XU Dong-hui, ZHANG Xiu-xin
2018, 17 (08): 1758-1768.   DOI: 10.1016/S2095-3119(18)61999-9
Abstract366)      PDF in ScienceDirect      
Tree peony seeds are rich in α-linolenic acid (ALA), and the peony seed oil is now being produced in China. Paeonia ostii is the most widely used tree peony species for oil extraction, which is commercially called Fengdan and treated as a single cultivar. Here, 50 P. ostii individuals from the same population in northern China were randomly selected for fatty acids (FAs) analysis. Thirteen FAs were isolated, and the most abundant five were palmitic acid (5.31–6.99%), stearic acid (1.22–2.76%), oleic acid (18.78–28.15%), linoleic acid (11.86–26.10%), and ALA (41.11–57.51%). There were significant individual differences of plants in FA quality and quantity and the linoleic acid content in Plant No. 48 even exceeded the scope of 1–99%. Further statistical analysis indicated that most of the individual FAs, saturated FAs, unsaturated FAs, and total FAs levels showed significant positive correlations to each other, whereas the seed yield per plant was independent and not correlated to the factors mentioned above. Ward’s hierarchical clustering results grouped the 50 plants into four clusters based on FA contents and seed yield, and the seven plants in Cluster IV were identified as good candidates for oil production. Our results confirmed that the individual differences did occur in P. ostii and Fengdan cannot be simply treated as one uniform cultivar. Also, these results may help simplify the selection of plants for oil peony breeding and accelerate the development of the oil peony industry.
Related Articles | Metrics
The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway
XIE Li-na, CHEN Ming, MIN Dong-hong, FENG Lu, XU Zhao-shi, ZHOU Yong-bin, XU Dong-bei, LI Lian-cheng, MA You-zhi, ZHANG Xiao-hong
2017, 16 (03): 559-571.   DOI: 10.1016/S2095-3119(16)61429-6
Abstract1117)      PDF in ScienceDirect      
Foxtail millet (Setaria italica (L.) P. Beauv) is a naturally stress tolerant crop.  Compared to other gramineous crops, it has relatively stronger drought and lower nutrition stress tolerance traits.  To date, the scope of functional genomics research in foxtail millet (S. italic L.) has been quite limited.  NAC (NAM, ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes, including abiotic stress responses.  In our previous foxtail millet (S. italic L.) RNA seq analysis, we found that the expression of a NAC-like transcription factor, SiNAC110, could be induced by drought stress; additionally, other references have reported that SiNAC110 expression could be induced by abiotic stress.  So, we here selected SiNAC110 for further characterization and functional analysis.  First, the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM (no apical meristem) domain between the 11–139 amino acid positions.  Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.  Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.  Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration, high salinity and other abiotic stresses.  Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that, under drought and high salt stress conditions, the seed germination rate, root length, root surface area, fresh weight, and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type (WT), suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.  However, overexpression of SiNAC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid (ABA) treatment.  Expression analysis of genes involved in proline synthesis, Na+/K+ transport, drought responses, and aqueous transport proteins were higher in the SiNAC110 overexpressed lines than in the WT, whereas expression of ABA-dependent pathway genes did not change.  These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses, likely through influencing the regulation of proline biosynthesis, ion homeostasis and osmotic balance.  Therefore SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants.
Reference | Related Articles | Metrics
G-protein β subunit AGB1 positively regulates salt stress tolerance in Arabidopsis
MA Ya-nan, CHEN Ming, XU Dong-bei, FANG Guang-ning, WANG Er-hui, GAO Shi-qing, XU Zhao-shi, LI Lian-cheng, ZHANG Xiao-hong, MIN Dong-hong, MA You-zhi
2015, 14 (2): 314-325.   DOI: 10.1016/S2095-3119(14)60777-2
Abstract1947)      PDF in ScienceDirect      
The heterotrimeric GTP-binding proteins (G-proteins) in eukaryotes consisted of α, β and γ subunits and are important in molecular signaling by interacting with G-protein-coupled receptors (GPCR), on which to transduce signaling into the cytoplast through appropriate downstream effectors. However, downstream effectors regulated by the G-proteins in plants are currently not well defined. In this study, the transcripts of AGB1, a G protein β subunit gene in Arabidopsis were found to be down-regulated by cold and heat, but up-regulated by high salt stress treatment. AGB1 mutant (agb1-2) was more sensitive to high salt stress than wild-type (WT). Compared with WT, the cotyledon greening rates, fresh weight, root length, seedling germination rates and survival rates decreased more rapidly in agb1-2 along with increasing concentrations of NaCl in normal (MS) medium. Physiological characteristic analysis showed that compared to WT, the contents of chlorophyll, relative proline accumulation and peroxidase (POD) were reduced, whereas the malonaldehyde (MDA) content and concentration ratio of Na+/K+ were increased in agb1-2 under salt stress condition. Further studies on the expression of several stress inducible genes associated with above physiological processes were investigated, and the results revealed that the expressions of genes related to proline biosynthesis, oxidative stress response, Na+ homeostasis, stress- and ABAresponses were lower in agb1-2 than in WT, suggesting that those genes are possible downstream genes of AGB1 and that their changed expression plays an important role in determining phenotypic and physiologic traits in agb1-2. Taken together, these findings indicate that AGB1 positively regulates salt tolerance in Arabidopsis through its modulation of genes transcription related to proline biosynthesis, oxidative stress, ion homeostasis, stress- and ABA-responses.
Reference | Related Articles | Metrics