Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Application of imidacloprid controlled-release granules to enhance the utilization rate and control wheat aphid on winter wheat
YUAN Wan-ling, XU Bo, RAN Gang-chao, CHEN Hui-ping, ZHAO Peng-yue, HUANG Qi-liang
2020, 19 (12): 3045-3053.   DOI: 10.1016/S2095-3119(20)63240-3
Abstract119)      PDF in ScienceDirect      
During winter wheat production, aphids need to be controlled with pesticides for the entire growth period.  Controlled-release technology has been regarded as an alternative method for the improvement of pesticide efficiency.  This study investigated two types of imidacloprid controlled-release granule (CR-GR): 2% imidacloprid CR-GR and 0.2% imidacloprid pesticide-fertilizer controlled-release granule (PF-CR-GR) when wheat was sown in winter.  The release performance, utilization rate, terminal residues in edible parts, control effect on aphids, and achieved winter wheat yield were evaluated for both laboratory experiments and field application.  Imidacloprid PF-CR-GR released more quickly in aqueous medium than CR-GR because of its good water solubility.  After CR-GR treatments, the concentrations in wheat roots and soil were similar throughout the entire sampling period, and the concentrations in shoots were about 10–20% of those in roots.  Imidacloprid was better absorbed when CR-GR was used as root treatment, compared with foliar treatment.  Field application showed that imidacloprid CR-GR and PF-CR-GR controlled aphids throughout the entire growth period of winter wheat and improved the wheat yield.  These findings identified application of imidacloprid CR-GR and PF-CR-GR on winter wheat as an effective way to enhance the pesticide utilization rate and ensure adequate yield.  This paper provides a theoretical basis for the scientific use of pesticides and guides scientific pesticide application.
Reference | Related Articles | Metrics
Susceptible time window and endurable duration of cotton fiber development to high temperature stress
XU Bo, ZHOU Zhi-guo, GUO Lin-tao, XU Wen-zheng, ZHAO Wen-qin, CHEN Bing-lin, MENG Ya-li, WANG You-hua
2017, 16 (09): 1936-1945.   DOI: 10.1016/S2095-3119(16)61566-6
Abstract796)      PDF in ScienceDirect      
    The development of the cotton fiber is very sensitive to temperature variation, and high temperature stress often causes reduced fiber yield and fiber quality.  Short-term high temperature stress often occurs during cotton production, but little is known about the specific timing and duration of stress that affects fiber development.  To make this clear, pot experiments were carried in 2014 and 2015 in a climate chamber using cotton cultivars HY370WR (less sensitive variety) and Sumian 15 (heat sensitive variety), which present different temperature sensitivities.  Changes of the most important fiber quality indices (i.e., fiber length, fiber strength and marcironaire) and three very important fiber development components (i.e., cellulose, sucrose and callose) were analyzed to define the time window and critical duration to the high temperature stress at 34°C (max38°C/min30°C).  When developing bolls were subjected to 5 days of high temperature stress at different days post-anthesis (DPA), the changes (Δ%) of fiber length, strength and micronire, as a function of imposed time followed square polynomial eq. as y=a+bx+cx2, and the time around 15 DPA was the most sensitive period for fiber quality development in response to heat stress.  When 15 DPA bolls were heat-stressed for different durations (2, 3, 4, 5, 6, 7 days), the changes (Δ%) of fiber length, strength and micronire, as a function of stress duration followed logistic equations .  Referred to that 5, 10 and 15% are usually used as criteria to decide whether techniques are effective or changes are significant in crop culture practice and reguard to the fiber quality indices change range, we suggested that 5% changes of the major fiber quality indices (fiber length, fiber strength and micronaire) and 10% changes of fiber development components (cellulose, sucrose and callose) could be taken as criteria to judge whether fiber development and fiber quality have been significantly affected by high temperature stress.  The key time window for cotton fiber development in response to the high temperature stress was 13–19 DPA, and the critical duration was about 5 days.
Reference | Related Articles | Metrics