Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Why high grain yield can be achieved in single seedling machinetransplanted hybrid rice under dense planting conditions?
HUANG Min, SHAN Shuang-lü, XIE Xiao-bing, CAO Fang-bo, ZOU Ying-bin
2018, 17 (06): 1299-1306.   DOI: 10.1016/S2095-3119(17)61771-4
Abstract487)      PDF in ScienceDirect      
This study was conducted to identify the factors associated with high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions.  Field experiments were done in Yong’an Town, Hunan Province, China in 2015 and 2016.  Two hybrid rice cultivars were grown under single seedling machine transplanting (SMT) and conventional machine transplanting (CMT) at a high planting density in each year.  Grain yield and yield attributes were compared between SMT and CMT.  Averaged across cultivars and years, grain yield was 12% higher under SMT than under CMT.  Plant height, basal stem width, and shoot and root dry weights were higher in seedlings for SMT than those for CMT.  SMT had less maximum tiller number per m2 and consequently less panicle number per m2 than did CMT.  Branch number per panicle, especially the secondary branch number per panicle, and spikelet number per cm of panicle length were more under SMT than under CMT, which resulted in more spikelet number per panicle under SMT than under CMT.  SMT had higher or equal spikelet filling percentage than did CMT.  The difference in grain weight between SMT and CMT was relatively small and inconsistent cross years.  SMT had higher or equal total biomass and harvest index than did CMT.  Dry weight per stem under SMT was heavier than that under CMT.  Larger leaf area per stem was partly responsible for the heavier dry weight per stem under SMT than under CMT.  Our study suggests that improvement in seedling quality, panicle size, and dry weight per stem are critical to the high grain yield in single seedling machine-transplanted hybrid rice under dense planting conditions.
Reference | Related Articles | Metrics
Comparisons of yield performance and nitrogen response between hybrid and inbred rice under different ecological conditions in southern China
JIANG Peng, XIE Xiao-bing, HUANG Min, ZHOU Xue-feng, ZHANG Rui-chun, CHEN Jia-na, WU Dan-dan, XIA Bing, XU Fu-xian, XIONG Hong, ZOU Ying-bin
2015, 14 (7): 1283-1294.   DOI: 10.1016/S2095-3119(14)60929-1
Abstract2025)      PDF in ScienceDirect      
In order to understand the yield performance and nitrogen (N) response of hybrid rice under different ecological conditions in southern China, field experiments were conducted in Huaiji County of Guangdong Province, Binyang of Guangxi Zhuang Autonomous Region and Changsha City of Hunan Province, southern China in 2011 and 2012. Two hybrid (Liangyoupeijiu and Y-liangyou 1) and two inbred rice cultivars (Yuxiangyouzhan and Huanghuazhan) were grown under three N treatments (N1, 225 kg ha–1; N2, 112.5–176 kg ha–1; N3, 0 kg ha–1) in each location. Results showed that grain yield was higher in Changsha than in Huaiji and Binyang for both hybrid and inbred cultivars. The higher grain yield in Changsha was attributed to larger panicle size (spikelets per panicle) and higher biomass production. Consistently higher grain yield in hybrid than in inbred cultivars was observed in Changsha but not in Huaiji and Binyang. Higher grain weight and higher biomass production were responsible for the higher grain yield in hybrid than in inbred cultivars in Changsha. The better crop performance of rice (especially hybrid cultivars) in Changsha was associated with its temperature conditions and indigenous soil N. N2 had higher internal N use efficiency, recovery efficiency of applied N, agronomic N use efficiency, and partial factor productivity of applied N than N1 for both hybrid and inbred cultivars, while the difference in grain yield between N1 and N2 was relatively small. Our study suggests that whether hybrid rice can outyield inbred rice to some extent depends on the ecological conditions, and N use efficiency can be increased by using improved nitrogen management such as site-specific N management in both hybrid and inbred rice production.
Reference | Related Articles | Metrics