Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Phenotypic characterization and genetic mapping of the dwarf mutant m34 in maize
LI Jie-ping, Soomro Ayaz Ali, XIAO Gui, CHEN Fan-jun, YUAN Li-xing, GU Ri-liang
2019, 18 (5): 948-957.   DOI: 10.1016/S2095-3119(18)61959-8
Abstract188)      PDF in ScienceDirect      
Plant height is one of the most important agronomic traits associated with yield in maize.  In this study, a gibberellins (GA)-insensitive dwarf mutant, m34, was screened from inbred line Ye478 by treatment with the chemical mutagen ethyl-methanesulfonate (EMS).  Compared to Ye478, m34 showed a dwarf phenotype with shorter internodes, and smaller leaf length and width, but with similar leaf number.  Furthermore, m34 exhibited smaller guard cells in internodes than Ye478, suggesting that smaller cells might contribute to its dwarf phenotype.  Genetic analysis indicated that the m34 dwarf phenotype was controlled by a recessive nuclear gene.  An F2 population derived from a cross between m34 and B73 was used for mutational gene cloning and this gene was mapped to a chromosome region between umc2189 and umc1553 in chromosome 1 bin1.10, which harbored a previously identified dwarf gene ZmVP8.  Sequencing analysis showed a nucleotide substitution (G1606 to A1606) in the sixth exon of ZmVP8, which resulted in an amino acid change (E531 to K531) from Ye478 to m34.  This amino acid change resulted in an α-helix changing to a β-sheet in the secondary protein structure and the ‘SPEC’ domain changed to a ‘BOT1NT’ domain in the tertiary protein structure.  Taken together, these results suggested that m34 is a novel allelic mutant originally derived from Ye478 that is useful for further ZmVP8 functional analysis in maize.
Reference | Related Articles | Metrics
Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice (Oryza sativa L.)
XIAO Gui-qing, ZHANG Hai-wen, LU Xiang-yang, HUANG Rong-feng
2015, 14 (9): 1687-1696.   DOI: 10.1016/S2095-3119(14)60975-8
Abstract2375)      PDF in ScienceDirect      
A novel rice lesion mimic mutant (LMM) was isolated from an ethane methyl sulfonate (EMS)-induced 02428 mutant bank. The mutant, tentatively designated as lmm6, develops necrotic lesions in the whole growth period along with changes in several important agronomic traits. We found that the initiation of the lesions was induced by light and cell death occurred in lmm6 accompanied with accumulation of reactive oxygen species (ROS). The lower chlorophyll content, soluble protein content and superoxide dismutase (SOD) activity, the higher malondialdehyde (MDA) content were detected in lmm6 than in the wild type (WT). Moreover, the observation by transmission electronic microscope (TEM) demonstrated that some organelles were damaged and the stroma lamella of chloroplast was irregular and loose in mesophyll cell of lmm6. In addition, lmm6 was more resistant than WT to rice blast fungus Magnaporthe grisea infection, which was consistent with increased expression of four genes involved in the defense-related reaction. Genetic analysis showed that mutant trait of lmm6 is inherited as a monogenic recessive nuclear gene located on the long arm of chromosome 6. Using simple sequence repeat (SSR) markers, the target gene was finally delimited to an interval of 80.8 kb between markers MM2359 and MM2370, containing 7 annotated genes. Taken together, our results provide the information to identify a new gene involved in rice lesion mimic, which will be helpful in clarifying the mechanism of cell death and disease resistance in rice.
Reference | Related Articles | Metrics