Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Potassium sulphate induces resistance of rice against the root-knot nematode Meloidogyne graminicola
LIU Mao-Yan, PENG De-liang, SU Wen, XIANG Chao, JIAN Jin-zhuo, ZHAO Jie, PENG Huan, LIU Shi-ming, KONG Ling-an, DAI Liang-ying, HUANG Wen-kun, LIU Jing
2022, 21 (11): 3263-3277.   DOI: 10.1016/j.jia.2022.08.002
Abstract268)      PDF in ScienceDirect      

Potassium (K), an important nutrient element, can improve the stress resistance/tolerance of crops.  The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield.  However, data on K2SO4 induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking.  In this work, K2SO4 treatment reduced galls and nematodes in rice plants and delayed the development of nematodes.  Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites, such an effect is achieved by rapidly priming hydrogen peroxide (H2O2) accumulation and increasing callose deposition.  Meanwhile, galls and nematodes in rice roots were more in the potassium channel OsAKT1 and transporter OsHAK5 gene-deficient plants than in wild-type, while the K2SO4-induced resistance showed weaker in the defective plants.  In addition, during the process of nematode infection, the expression of jasmonic acid (JA)/ethylene (ET)/brassinolide (BR) signaling pathway-related genes and pathogenesis-related (PR) genes OsPR1a/OsPR1b was up-regulated in rice after K2SO4 treatment.  In conclusion, K2SO4 induced rice resistance against M. graminicola.  The mechanism of inducing resistance was to prime the basal defense and required the participation of the K+ channel and transporter in rice.  These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.

Reference | Related Articles | Metrics
Three Sclerotinia species as the cause of white mold on pea in Chongqing and Sichuan of China
DENG Dong, SUN Su-li, DU Chen-zhang, XIANG Chao, LONG Jue-chen, CHEN Wei-dong, ZHU Zhen-dong
2021, 20 (11): 2957-2965.   DOI: 10.1016/S2095-3119(21)63629-8
Abstract117)      PDF in ScienceDirect      
 
White mold of pea caused by Sclerotinia sclerotiorum is a common disease in China.  However, we discovered that the diverse Sclerotinia species could cause white mold on pea plants in Chongqing and Sichuan of China during recent disease surveys.  Thus, the objective of this study was to confirm the causal agents from diseased pea plants.  The obtained isolates of white mold from Chongqing and Sichuan were identified by morphological characters and molecular characterization to determine the pathogen species, and their pathogenicity was confirmed on pea through completing Koch’s postulates.  Fungal isolates of Sclerotinia-like were obtained from diseased plants or sclerotia.  Based on morphological characteristics and molecular characterization, 30 isolates were identified to three species, six isolates as S. minor, seven as S. sclerotiorum, and 17 as S. trifoliorum.  In pathogenicity tests on pea cultivars Zhongwan 4 and Longwan 1, all 30 isolates caused typical symptoms of white mold on the inoculated plants, and the inoculated pathogens were re-isolated from the diseased plants.  This study confirmed that white mold of pea was caused by three Sclerotinia species, S. sclerotiorum, S. minor and S. trifoliorum in Chongqing and Sichuan. It is the first report that S. minor and S. trifoliorum cause white mold of pea in Southwest China.
 
Reference | Related Articles | Metrics
Evaluation of the biocontrol potential of Aspergillus welwitschiae against the root-knot nematode Meloidogyne graminicola in rice (Oryza sativa L.)
LIU Ying, DING Zhong, PENG De-liang, LIU Shi-ming, KONG Ling-an, PENG Huan, XIANG Chao, LI Zhong-cai, HUANG Wen-kun
2019, 18 (11): 2561-2570.   DOI: 10.1016/S2095-3119(19)62610-9
Abstract108)      PDF in ScienceDirect      
The root-knot nematode Meloidogyne graminicola is considered one of the most devastating pests in rice-producing areas, and nematicides are neither ecofriendly nor cost effective.  More acceptable biological agents are required for controlling this destructive pathogen.  In this study, the biocontrol potential of Aspergillus welwitschiae AW2017 was investigated in laboratory and greenhouse experiments.  The in vitro ovicidal and larvicidal activities of A. welwitschiae metabolites were tested on M. graminicola in laboratory experiments.  The effect of A. welwitschiae on the attraction of M. graminicola to rice and the infection of rice by M. graminicola was evaluated in a greenhouse.  The bioagent AW2017 displayed good nematicidal potential via its ovicidal and larvicidal action.  The best larvicidal activity was observed at a concentration of 5×AW2017, which caused an 86.2% mortality rate at 48 h post inoculation.  The highest ovicidal activity was recorded at a concentration of 5×AW2017, which resulted in an approximately 47.3% reduction in egg hatching after 8 d compared to the control.  Under greenhouse conditions, the application of A. welwitschiae significantly reduced the root galls and nematodes in rice roots compared to the control.  At a concentration of 5×AW2017, juveniles and root galls in rice roots at 14 d post inoculation (dpi) were reduced by 24.5 and 40.5%, respectively.  In addition, the attraction of M. graminicola to rice roots was significantly decreased in the AW2017 treatment, and the development of nematodes in the AW2017-treated plants was slightly delayed compared with that in the PDB-treated control plants.  The results indicate that A. welwitschiae is a potential biological control agent against M. graminicola in rice.
 
Reference | Related Articles | Metrics