Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Molecular and in vitro biochemical assessment of chemosensory protein 10 from the brown planthopper Nilaparvata lugens at acidic pH
Muhammad Irfan WARIS, Aneela YOUNAS, Rana Muhammad Kaleem ULLAH, Fatima RASOOL, Muhammad Muzammal ADEEL, WANG Man-qun
2022, 21 (3): 781-796.   DOI: 10.1016/S2095-3119(20)63494-3
Abstract103)      PDF in ScienceDirect      
Chemosensory proteins (CSPs) are important molecular components of the insect olfactory system, which are involved in capturing, binding, and transporting hydrophobic odour molecules across the sensillum in sensillar lymph in regulating insect behavior.  This protein family (CSPs) is also involved in many other systems that are not linked to olfactory receptors in olfactory sensilla.  The brown planthopper (BPH) is a monophagous pest of rice that causes damage by sucking phloem sap and transmitting a number of diseases caused by viruses.  In this study, fluorescence competitive binding assay and fluorescence quenching assay at acidic pH were performed as well as homology modelling to describe the binding affinity of NlugCSP10.  Fluorescence competitive binding assay (FCBA) demonstrated that NlugCSP10 bound strongly to nonadecane, farnesene, and 2-tridecanone at acidic pH.  The results of FCBA indicated that NlugCSP10 bound different ligands at the physiological pH (5.0) of the bulk sensillum lymph.  Fluorescence quenching assay demonstrated that NlugCSP10 generated a stable complex with 2-tridecanone, while two ligands nonadecane and farnesene collided due to molecular collisions.  The interaction of selected ligands with the modelled structure of NlugCSP10 was also analyzed, which found the key amino acids (Gln23, Gln24, Gln25, Asn27, Met33, Ser34, Ile35, Tyr36, Asn42, Met43, Val45, Asn46, Asn93, Arg96, Ala97, Lys99, and Ala100) in NlugCSP10 that were involved in binding of volatile compounds.  The present study contributes to the binding profile of NlugCSP10 that promotes the development of behaviorally active ligands based on BPH olfactory system.
 
Reference | Related Articles | Metrics
The Influence of Transgenic cry1Ab/cry1Ac, cry1C and cry2A Rice on Non- Target Planthoppers and Their Main Predators Under Field Conditions 
HAN Yu, XU Xue-liang, MA Wei-hua, YUAN Ben-qi, WANG Hui, LIU Fang-zhou, WANG Man-qun, WU
2011, 10 (11): 1739-1747.   DOI: 10.1016/S1671-2927(11)60172-7
Abstract2498)      PDF in ScienceDirect      
Transgenic Bt rice has been shown to be an effective means of controlling Lepidoptera pests of rice. However, the potential roles of transgenic rice on planthoppers and their predators need to be investigated before its commercialization. Population density, species dominance and population dynamics are important parameters of arthropods populations in field. So the impacts of three transgenic Bt rice strains expressing cry1Ab/cry1Ac, cry1C and cry2A on population density, species dominance and population dynamics of three species of planthoppers (Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus) and their three main predators (Cyrtorhinus lividipennis, Pirata subpiraticus and Theridium octomaculatum) were evaluated at three sites in Hubei Province, China, in the current study. The results showed that among three species of planthoppers, both in transgenic and non-transgenic rice field, the predominant species of planthoppers within phytophagous guild was S. furcifera at any site either growing season (46-50%). Significantly higher population density of N. lugens was observed in T2A-1 field relative to Minghui 63 field at Wuxue in 2010. The species dominance of predator, P. subpiraticus, in TT51 field was significantly higher than that in T1C-19 and T2A-1 fields in 2009 at Xiaogan site. Sampling date significantly influenced six arthropods except for P. subpiraticus in 2010. The interaction between rice strain×sampling date had no significant adverse effects on the population dynamics of three species of planthoppers and their predators, except for several individual species in 2009. The interaction among rice strain×sampling date×sampling site also had no significant effect on six arthropods except for S. furcifera in 2009. The results indicated that transgenic Bt rice expressing cry1Ab/cry1Ac, cry2A and cry1C had no significant adverse effects on the population dynamics of three planthoppers and their predators in most investigated data and sampling site.
Reference | Related Articles | Metrics