Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Cytospora pyri promotes Erwinia amylovora virulence by providing metabolites and hyphae
Tong Shen, Mengdi Ye, Yeping Xu, Bohan Ding, Hongtao Li, Li Zhang, Jun Wang, Yanli Tian, Baishi Hu, Youfu Zhao
2024, 23 (9): 3045-3054.   DOI: 10.1016/j.jia.2024.05.020
Abstract124)      PDF in ScienceDirect      
Bacterial–fungal interactions are widespread in nature.  We observed that pear orchards affected by Cytospora pyri (formerly Valsa pyri) were often accompanied with Erwinia amylovora.  However, the relationship of the two pathogens was unclear.  The objective of this study was to determine whether the synergistic effect exists between Eamylovora and Cpyri.  We first analyzed the coexistence frequencies of Eamylovora and Cpyri in pear trees.  Virulence of the two pathogens, growth, physical interactions, amylovoran production, and expression of genes for amylovoran biosynthesis were conducted.  Our results showed that Eamylovora and Cpyri could coexist on the same lesion and caused much more severe disease.  We also found that Eamylovora could physically attach to Cpyri and the expression of amylovoran biosynthesis genes were up-regulated with fungal metabolite treatment.  These results indicate that Eamylovora and Cpyri can cooperatively interact, which provides Cpyri with an opportunity to promote bacterial dispersal and production of virulence factor in Eamylovora.


Reference | Related Articles | Metrics
Brucella effector protein BspF manipulates the host cell autophagy by acetylating SNAP29
Ruitong Shen, Yuqi Wang, Qiao Dong, Jinying Zhu, Yukai Xing, Ang Li, Gen Lu, Sijiao Wu, Ze Yu, Fangyuan Du, Jingbo Gao, Qingqing Wei, Xiaoyue Chen, Jinling Liu, Huan Zhang, Zeliang Chen
DOI: 10.1016/j.jia.2025.02.011 Online: 13 February 2025
Abstract12)      PDF in ScienceDirect      

Brucella spp., an intracellular bacterium, uses its type IV secretion system (T4SS) to regulate host signaling pathways and promote intracellular survival, but the molecular mechanism of this process remains largely unknown. Here we found that increasing the abundance of acetylated protein in host cells promotes the intracellular survival of Brucella. Moreover, our results demonstrated that the Brucella effector protein BspF can impact protein acetylation modification in host cells by interacting with other intracellular proteases. We conducted LC-MS/MS to characterize the protein acetylation mediated by BspF. We identified that SNAP29 K103 was acetylated, and that acetylated SNAP29 inhibited its interaction with STX17, thereby regulating the autophagy and providing an environment for the intracellular survival of Brucella. Furthermore, our results provide the first report of a bacterial effector using acetylation to affect the SNAP29-STX17-VAMP8 complex, and inhibit the host's defense system. Our results suggest a vital role of SNAP29 acetylation in autophagy of host cells under intracellular infection, by specifically regulating the assemble of SNARE.

Reference | Related Articles | Metrics