Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system
Ningning Yu, Bingshuo Wang, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang
2024, 23 (10): 3610-3621.   DOI: 10.1016/j.jia.2024.03.061
Abstract101)      PDF in ScienceDirect      

The footprints of water and nitrogen (WF and NF) provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen (Nr) loss in crop production.  In this study, a field experiment over two years (2019 and 2020) compared three integrated agronomic practice management (IAPM) systems: An improved management system (T2), a high-yield production system (T3), and an integrated soil–crop management system (ISCM) using a local smallholder farmer’s practice system (T1) as control, to investigate the responses of WF, Nr losses, water use efficiency (WUE), and nitrogen use efficiency (NUE) to IAPM.  The results showed that IAPM optimized water distribution and promoted water use by summer maize.  The evapotranspiration over the whole maize growth period of IAPM increased, but yield increased more, leading to a significant increase in WUE.  The WUE of the T2, T3, and ISCM treatments was significantly greater than in the T1 treatment, in 2019 and 2020 respectively, by 19.8–21.5, 31.8–40.6, and 34.4–44.6%.  The lowest WF was found in the ISCM treatment, which was 31.0% lower than that of the T1 treatment.  In addition, the ISCM treatment optimized soil total nitrogen (TN) distribution and significantly increased TN in the cultivated layer.  Excessive nitrogen fertilizer was applied in treatment T3, producing the highest maize yield, and resulting in the highest Nr losses.  In contrast, the ISCM treatment used a reduced nitrogen fertilizer rate, sacrificing grain yield partly, which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.  The Nr level in the ISCM treatment was 34.8% lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8–63.1% in 2019 and 2020, respectively.  Considering yield, WUE, NUE, WF, and NF together, ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.


Reference | Related Articles | Metrics
The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems
Zeli Li, Fuli Fang, Liang Wu, Feng Gao, Mingyang Li, Benhang Li, Kaidi Wu, Xiaomin Hu, Shuo Wang, Zhanbo Wei , Qi Chen, Min Zhang, Zhiguang Liu
2024, 23 (10): 3592-3609.   DOI: 10.1016/j.jia.2024.01.031
Abstract80)      PDF in ScienceDirect      
Soil microorganisms play critical roles in ecosystem function.  However, the relative impact of the potassium (K) fertilizer gradient on the microbial community in wheat‒maize double-cropping systems remains unclear.  In this long-term field experiment (2008–2019), we researched bacterial and fungal diversity, composition, and community assemblage in the soil along a K fertilizer gradient in the wheat season (K0, no K fertilizer; K1, 45 kg ha−1 K2O; K2, 90 kg ha−1 K2O; K3, 135 kg ha−1 K2O) and in the maize season (K0, no K fertilizer; K1, 150 kg ha−1 K2O; K2, 300 kg ha−1 K2O; K3, 450 kg ha−1 K2O) using bacterial 16S rRNA and fungal internally transcribed spacer (ITS) data.  We observed that environmental variables, such as mean annual soil temperature (MAT) and precipitation, available K, ammonium, nitrate, and organic matter, impacted the soil bacterial and fungal communities, and their impacts varied with fertilizer treatments and crop species.  Furthermore, the relative abundance of bacteria involved in soil nutrient transformation (phylum Actinobacteria and class Alphaproteobacteria) in the wheat season was significantly increased compared to the maize season, and the optimal K fertilizer dosage (K2 treatment) boosted the relative bacterial abundance of soil nutrient transformation (genus Lactobacillus) and soil denitrification (phylum Proteobacteria) bacteria in the wheat season.  The abundance of the soil bacterial community promoting root growth and nutrient absorption (genus Herbaspirillum) in the maize season was improved compared to the wheat season, and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation (genus MND1) and soil nitrogen cycling (genus Nitrospira) genera in the maize season.  The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient, and microhabitats explained the largest amount of the variation in crop yields, and improved wheat‒maize yields by 11.2–22.6 and 9.2–23.8% with K addition, respectively.  These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.


Reference | Related Articles | Metrics