Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.)
XUE Pao1, ZHANG Ying-xin1, LOU Xiang-yang1, ZHU Ai-ke, CHEN Yu-yu, SUN Bin, YU Ping, CHENG Shi-hua, CAO Li-yong, ZHAN Xiao-deng
2019, 18 (8): 1838-1850.   DOI: 10.1016/S2095-3119(18)62113-6
Abstract202)      PDF in ScienceDirect      
Grain size is a major determinant of grain weight, which is one of the components of rice yield.  The objective o this study was to identify novel, and important quantitative trait loci (QTLs) for grain size and weight in rice.  QTLs were mapped using a BC4F4 population including 192 backcross inbred lines (BILs) derived from a backcross between Xiaolijing (XLJ) and recombinant inbred lines (RILs).  The mapping population was planted in both Lingshui (Hainan, 2015) and Fuyang (Zhejiang, 2016), with the short- and long-day conditions, respectively.  A total of 10 QTLs for grain length, four for grain width, four for the ratio of grain length to width, and 11 for grain weight were detected in at least one environment and were distributed across 11 chromosomes.  The phenotypic variance explained ranged from 6.76–25.68%, 14.30–34.03%, 5.28–26.50%, and 3.01–22.87% for grain length, grain width, the ratio of grain length to width, and thousand grain weight, respectively.  Using the sequential residual heterozygotes (SeqRHs) method, qGS7.1, a QTL for grain size and weight, was mapped in a 3.2-Mb interval on chromosome 7.  No QTLs about grain size and weight were reported in previous studies in this region, providing a good candidate for functional analysis and breeding utilization.
Reference | Related Articles | Metrics
The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands
SUN Bin-feng, ZHAO Hong, Lü Yi-zhong, LU Fei, WANG Xiao-ke
2016, 15 (2): 440-450.   DOI: 10.1016/S2095-3119(15)61063-2
Abstract2490)      PDF in ScienceDirect      
The application of nitrogen (N) fertilizer to increase crop yields has a significant influence on soil methane (CH4) and nitrous oxide (N2O) emission/uptake. A meta-analysis was carried out on the effect of N application on (i) CH4 emissions in rice paddies, (ii) CH4 uptake in upland fields and (iii) N2O emissions. The responses of CH4 emissions to N application in rice paddies were highly variable and overall no effects were found. CH4 emissions were stimulated at low N application rates (<100 kg N ha–1) but inhibited at high N rates (>200 kg N ha–1) as compared to no N fertilizer (control). The response of CH4 uptake to N application in upland fields was 15% lower than control, with a mean CH4 uptake factor of –0.001 kg CH4-C kg–1 N. The mean N2O emission factors were 1.00 and 0.94% for maize (Zea mays) and wheat (Triticum aestivum), respectively, but significantly lower for the rice (Oryza sativa) (0.51%). Compared with controls, N addition overall increased global warming potential of CH4 and N2O emissions by 78%. Our result revealed that response of CH4 emission to N input might depend on the CH4 concentration in rice paddy. The critical factors that affected CH4 uptake and N2O emission were N fertilizer application rate and the controls of CH4 uptake and N2O emission. The influences of application times, cropping systems and measurement frequency should all be considered when assessing CH4 and N2O emissions/uptake induced by N fertilizer.
Reference | Related Articles | Metrics